
- 9 -

nuals: Support for Highly Interactive, Graphical
User Interfaces in Lisp, Technical Report, CMU-
CS-89-196, Pittsburg, PA, 1989.

[Ousterout 90] John K. Ousterhout, Tcl: an embeddable com-
mand language, USENIX Winter Conference, Ja-
nuary 1990, pages 183-192.

[Ousterout 94] John K. Ousterhout, Tcl and the Tk toolkit,
Addison-Wesley, 1994, ISBN: 0-201-63337-X.

Annex

Complete code of the <Labeled-entry> class.

;;;; Define class "<Labeled-entry>"

(define-class <Labeled-entry> (<Tk-composite-widget> <Entry>)
 ((entry :accessor entry-of)
 (label :accessor label-of)
 ;; Special slot

(text :accessor text
 :init-keyword :text
 :allocation :special
 :propagate (label))

 (value :accessor value
 :init-keyword :value
 :allocation :special
 :propagate (entry))

 (background :accessor background
 :init-keyword :background

 :allocation :special
 :propagate (frame entry label)))

 :metaclass <Tk-composite>)

;;;; Define method "initialize-composite-widget". This method will be called when
;;;; a new labeled entry will be created.

(define-method initialize-composite-widget
 ((self <Labeled-entry>) initargs frame)

 (let* ((e (make <Entry> :parent frame :relief "ridge"))
 (l (make <Label> :parent frame))

 ;; pack sub widgets
 (pack l :side "left" :padx 5 :pady 5)
 (pack e :side "right" :padx 5 :pady 5 :expand #t :fill "x")

 ;; Set proper slots
 (slot-set! self 'Id (Id e))
 (slot-set! self 'entry e)
 (slot-set! self 'label l)))

;;;; To create the labeled entry of Figure 2:
(define le (make <Labeled-entry> :text "Enter a value" :value 100))

;;;; To map it on the screen:
(pack le)

[Steele 90] Guy. L. Steele Jr., Common Lisp: the Language,
2nd Edition, Digital Press (Bedford, MA), 1990.

- 8 -

This call will activate the setter function of the
background slot. This setter function will do the
three slot assignments needed to change totally the
background. Note that this setter function is created
only once in the program (i.e. at the <Labeled-
entry> creation time). Consequently, the only
overhead we have to access such a special slot (vs. a
true-widget pseudo slot) is the call to the initial
slot-value.

In the object oriented programming spirit, our com-
position mechanism must be applicable more than
once. It means that we must be able to build new
composite widgets which are built upon previously
created composite widgets. Consider for instance a
choice box widget. This new kind of widget could be
implemented with a labeled entry, as the one we
have used until now, to which is associated a menu
button giving a list of possible choices (see
Figure 3). Here, the <Choice-box> inherits of the
previous <Labeled-Entry> class and a possible
definition for this class could be:

(define-class <Choice-Entry>
(<Labeled-Entry>)

((frame :accessor frame-of)
(lab-entry :accessor lentry-of)
(menu :accessor menu-of)
(menubutton :accessor menubutton-of)
(value :accessor value

:init-keyword :value
:allocation :special
:propagate (lentry))

:metaclass <Tk-composite>)

This simple class definition and its associated ini-
tialize method suffice to define a choice box. We
can see that access to the value special slot will still
give a correct value. For instance, getting this slot
will redirect the reading to the lab-entry slot
which in turn will redirect it to the reading of the
slot value of the entry, as seen before.

5 Conclusion

In this paper we have presented the STk interpreter
and its object oriented extension. Both packages are
well integrated with the Tk graphical toolkit. Even
if using an applicative or object oriented language
for GUI programming is not a new idea
([Calder 87], or [Garnet] for instance), rare are those
which use extensively a meta object protocol. Inves-
tigating in this direction seems interesting and the

results already obtained are promising. In particu-
lar, the original mechanism of composition shown
in this paper is a good illustration of adapting a
meta protocol to a particular need. It permits to
build and test new widgets without having to re-
compile the toolkit. Furthermore, daily experience
of STk and STklos show that an applicative object
oriented languages can be comparable, in terms of
performances, to a more classical language.

Availability

STk and its object system STklos are distributed free
of charge by anonymous ftp at kaolin.unice.fr.
Current version runs on

•Sun Solaris (1 & 2),

•Ultrix (4.2),

•Dec OSF1,

•SGI (Irix4.05 & 5.1.1)

•Linux(0.99).

References

[Apple 92] Apple, Dylan: an object oriented dynamic langua-
ge, Apple Computer, 1992.

[Calder 87] Mark A. Linton, Paul R. Calder and John Vlis-
sides, The Design and Implementation of Inter-
Views, Proceedings of the USENIX C++
Workshop, Santa Fe, New Mexico,november
1987.

[Clinger 91] W. Clinger and J. Rees (editors), Revised4 Re-
port on the Algorithmic Language Scheme, ACM
Lisp Pointers, 4 (3), 1991.

[Kickzales 91] Gregor Kickzales, Jim de Rivières, Daniel
G. Bobrow, The Art of Meta Object Protocol, MIT
Press, 1991.

[Lieberman 86] Henry Lieberman, Delegation and Inheri-
tance: Two Mechanisms for Sharing Knowledge in
Object Oriented Systems, Actes des 3e JLOO, Bi-
gre+Globule, 48, pages 79-89, Paris, 1986.

[Meyer 89] Bertrand Meyer, Object Oriented Software Cons-
truction, Prentice Hall International (UK), Ltd.,
Hemel Hemstead, 1989.

[Myers 89] Brad Myers, The Garnet Toolkit Reference Ma-

- 7 -

frame’s Id which embodies the components of a
composite widget.

This implementation of the labeled entry is not yet
completely satisfactory. With the previous inherit-
ance scheme, the entry sub-widget plays a major
role in the labeled entry. In some occasions, howev-
er, we could want that the accesses to a particular
slot will be “redirected” to another sub-widget. For
instance, we could want that readings and writings
to the slot relief of a labeled entry access in fact to
the relief of the frame rather than the entry relief.
Eventually, we could also want that a slot modifica-
tion will be propagated to several sub-widgets of
the labeled entry. For instance, it would be suitable
to propagate the modification of the background
slot of a labeled entry not only to the entry but also
to the label and the frame. What is wanted here is
close to the delegation mechanism[Libermann 86].
As we will see, the solution provided in STklos will
permit to choose to which sub-widget(s) a slot ac-
cess must be redirected.

4.3 The <Tk-composite> class

STklos provides a special meta-class, named <Tk-
composite> for handling the creation of compos-
ites widgets. The main job of this meta-class consists
to manage a special kind of slots whose access can
be redirected to slots of other objects. Using this
meta-class, a simple implementation of the labeled
entry discussed before could be written as:

(define-class <Labeled-entry>
(<Tk-composite-widget> <Entry>

((entry :accessor entry-of)
(label :accessor label-of)
(background :accessor background

:init-keyword :background
:allocation :special
:propagate (frame entry

label))
(value :accessor value-of

:init-keyword :value
:allocation :special
:propagate (entry)))

:metaclass <Tk-composite>)

As we can see, a label entry inherits from the <En-
try> class. This class defines all the slots (i.e. Tk
options) available for an entry. It is important to
note here that even if the slots for such a class are
numerous, only three of them are effectively allocat-
ed in a standard Tk widget (namely parent , Id
and Eid). All the other slots are pseudo-slots which
are allocated elsewhere6.

Previous class definition augments the <Entry>
class with three new slots called frame , entry and
label . These slots will contain the sub-widgets
composing the labeled entry. Next, two slots are de-
clared with a special allocation protocol (signaled
with the :special keyword). Special slots are slots
for which reading and writing are redirected to oth-
er sub-widgets. Here again, such slots are not di-
rectly implemented in an instance; they don’t make
the instance size growing. The background slot of
this class definition, for instance, states that setting
its value must be propagated to the entry, label and
frame slots (reading of this slot will find its value in
the first element of the :propagate list: frame).
Note that background is already present in the
<Entry> as a pseudo-slot; current definition will
overload the inherited one. Concerning the value
slot, it is said that it is redirected only to the slot
value of the entry component.

We can now define the initialize-compos-
ite-widget method which will be called by the
system just after a composite widget allocation
(complete code is given in annex). The only thing
we have to do in this method consists to initialize
the two true slots defined directly in the <La-
beled-entry> class (entry and label).

Previous definitions permits to hide to the user the
fact that a labeled entry is a composite widget by of-
fering the same kind of access. For example, sup-
pose now that le denotes an instance of the class
<Labeled-entry> ; setting all its components to
¨grey¨ can be simply done by

(set! (slot-value le ‘background)
¨grey¨)

or

(set! (background le) ¨grey¨)

6. <Tk-composite-widget> defines also
a slot named frame which contains the exter-
nal frame of the composite widget.

Figure 3: A Choice Box

- 6 -

ue-of notion directly as a slot, rather than a generic
function. Virtual slots will be not described here.

As we have seen, programming with STklos brings
the power of a full object language to the process of
graphical user interface building. Next section will
show that it also permits to easily implement com-
posite widgets.

4 Defining composite widgets

Today, object oriented programming languages
have proven their usefulness in program construc-
tion. In particular, it is a cliché to say that they facil-
itate program maintainability and code reuse.
However, there is one point where object oriented
paradigm is not so well suited: creation of new
classes of objects which are the composition of sim-
pler ones.

4.1 The problem

To illustrate our purpose, let us have a look to a la-
beled entry. A labeled entry is a small line editor with
a label on its left informing the user about the value
he/she is supposed to provide (see Figure 2).

Since this kind of graphical object does not exist per
se in pure Tk, we could want to create a new class
for labeled entries. In Tk, this kind of object can be
implemented by composing three basic objects: a la-
bel, an entry and a frame which will group them.
Once this composition is done, the frame will serve
to manipulate the labeled entry from the outside (to
place it on the screen for instance). Of course, ac-
cessing to the text entered by the user or to the label
of this object will necessitate to “open” the frame.

4.2 Classical solutions

Let us look how we could implement a class <La-
beled-entry> for the kind of labeled entries spec-
ified above. The first approach consists to uses the
multiple-inheritance mechanism to implement this

new class. In this case, we can inherit from the pre-
defined classes <Frame>, <Label> and <Entry>.
Unfortunately, this will not work since inheritance
will share all the common slots. It means, for in-
stance, that the slot parent which contains the par-
ent widget of a graphical object, and which is
present in all the components of this new object,
will not be duplicated. Having a sole exemplary of
this slot is a problem since those components don’t
share the same parent (label and entry parent is the
frame itself). It could be argued that a different slot
inheritance scheme should resolve the problem. For
instance, it would be possible to duplicate common
slots instead of sharing them, as it is possible in
Eiffel for instance [Meyer ??]. This solution would
probably simplify our problem. However, the
methods already written for a component of our
new kind of entry will be in front of three slots with
the same name. In this case, we can decide whose
slot is the more appropriate but it would be less
clear if two components were of the same type.

Since multiple inheritance is helpless here, we can
try to use single inheritance to resolve this problem.
In this case, we have to choose the more adequate
class from which inherit, and other component will
be stored in new defined slots. Inheriting from the
<Entry> class is clearly more accurate since the be-
havior expected from a labeled entry is close from a
single entry behavior. In some other situation this
choice could be less obvious. Here, getting the con-
tent of the entry part can be done by calling the ge-
neric function value-of described in previous
section. With the proposed inheritance scheme, a
call to value-of whose argument is a <Labeled-
entry> will call the method defined for single en-
tries (i.e. which are instances of the <Entry> class).
Provided that the slot Id of the labeled entry con-
tains the Tk-command used to implement the entry,
this call will yield the correct value.

However, keeping in a slot the entry identification
does not permit to manipulate the labeled entry as
an autonomous entity5. This problem can be easily
solved: it suffices to introduce a slot in the root class
for global widget manipulations. This slot, called
Eid, will always contain a reference to the most “ex-
ternal” graphical object of our widget. This slot is
set to the value contained in the Id slot for simple
widget as said before; it is set generally to the

5. For instance, this is theframe identification
which is needed to destroy all the components of
a labeled entry rather than the entry one.

Figure 2: A labeled entry

- 5 -

Scheme space). Saying that the meta-class of the
<Button> class is <Tk> (the one which knows
what to do with pseudo slots) is done with the
:metaclass option. With this definition, the sys-
tem is able to build slot readers and writers which
take into account pseudo slots. It is important to
note that the accessors construction is done at class
creation. Consequently, no test is done when access-
ing a slot to know what kind of allocation it uses.

Embodying Tk widgets in STklos objects permits to
hide some Tk idiosyncrasies which, in turn, im-
proves greatly the level of programming when
building an interface. In particular, it avoids the
knowledge of pure Tk widgets naming convention
which is a pain when developing large applications.
The only thing the user has to know when creating
a new object is it’s parent. An example of widgets
creation is shown below:

(define f (make <Frame>))

(define b1 (make <Button>
:text ¨B1¨
:parent f))

(define b2 (make <Button>
:text ¨B2¨
:parent f)

Buttons b1 and b2 which are created here specify
that their parent is the frame f . Since this frame
does not specify a particular parent, it is supposed
to be a direct descendant of the root window
root . This parent’s notion is also used for canvas
items: a canvas item is considered as a descendant
of the canvas which contains it. For instance,

(define c (make <Canvas>))

(define r (make <Rectangle>
:parent c
:coords ´(0 0 50 50)))

defines a rectangle called r in the c canvas. User can
now forget that r is included in c since this informa-
tion is embedded in the Scheme object which repre-
sent it. For instance, the following expression
permits to move the r rectangle without having to
cite the c canvas.

(move r 10 10)

Similarly, the expression

(bind r ¨<Enter>¨ ´(display ¨Hello\n¨))

permits to display a message each time the mouse
enters in the r rectangle. It is important to note here
that we would use exactly the same expression to as-
sociate such a binding to a simple widget such as a
button or a label, whereas it takes two different syn-
tactic forms using standard Tk.

Usage of generic functions is also a significant im-
provement over the basic level since it allows an ho-
mogeneous access to the Tk commands. Suppose
for instance that we want giving access to the value
of a scale or an entry widget with the generic
function value-of . This can easily done by the fol-
lowing methods in STklos:

(define-method value-of (obj)
((slot-ref obj ´Id) ´get))

In this case, one method is sufficient to implement
our function since the sub-options for reading a
scale or entry value is the same in Tk. Writing this
value is a little bit more complicated and is given
below:

(define-method
(setter value-of)((obj <Scale>) v)

((slot-ref obj ´Id) ´set v))

(define-method
(setter value-of)((obj <Entry>) v)

((slot-ref obj ´Id) ´delete 0 ´end)
((slot-ref obj ´Id) ´insert 0 v))

Using the same generic function (with two different
methods) permit to hide these low level details. In
the call,

(set! (value-of x) 100)

the system will choose the method to call depend-
ing of the actual type of the variable x . Furthermore,
an error4 will be signalled if x is not an entry or a
scale.

STklos also proposes the notion of virtual slot. Virtu-
al slots requires no storage as the pseudo slots seen
before. It is to the programmer to define methods to
retrieve and store the value of such a slot. Virtual
slots permit to easily implement the previous val-

4. more exactly, the system calls the no-ap-
plicable-method generic function which,
by default, signals an error. User can specialize
this function to provide another handler if need-
ed

- 4 -

vas (e.g. a rectangle) and interface widgets (e.g.
a label). This is an important difference with the
Tk view of canvas items. In Tk, manipulation of
a canvas item requires a reference to the canvas
which contains it. In STklos the object itself
knows the canvas to which it belongs and it can
be forgotten when manipulated.

• Some simple widgets are already obtained by
inheritance. For instance, a button can be seen as
a reactive label. This permits to group all the
methods to manage the appearance of the text of
a label in the <Label> class. Thus, the <But-
ton> class has only to manage the operations
which are specific to reactive texts.

• Simple and composites widgets share a com-
mon ancestor (<Tk-widget>). This will permit
us to define composite widgets which could be
controlled exactly as the toolkit built-in widgets.

3.2 Accessing widgets options

In STklos, each option of a Tk widget is seen as an
object slot. For instance, a simplified definition of a
Tk button could be:

(define-class <Button>
(<Label>)

((command :accessor command
:init-keyword :command
:allocation :pseudo))

:metaclass <Tk>)

This declaration permits to define the class <But-
ton>. This class inherits from <Label> and owns
an extra slot called command. Allocation of this slot
is said to be :pseudo. Pseudo-slots are special pur-
pose slots: they can be used as normal slots but they
are not allocated in the Scheme world (i.e. their val-
ue is stored in one of the structures manipulated by
the Tk library instead of in a Scheme object). Conse-
quently, reading or writing this slot will be done in
a particular way3. Pseudo slots are implemented by
the meta-class <Tk>. Defining a class using this
meta-class permits to modify the protocol to access
a slot at its lowest level. Consequently, it is impossi-
ble to have a slot value which does not reflect the ac-
tual value of the Tk option (remember that no space
is reserved to save the value of this slot in the

3. Access to a pseudo slot will be done using the
configure sub-command which is available for
each Tk widget.

Figure 1: A partial vue of STk hierarchy

<Tk-object>

<Tk-widget>

<Tk-simple-widget> <Tk-composite-widget>

<Labeled-Entry>

<Choice-box>

...

<Rectangle> <Line><Label>

<Button>

<Tk-complex-button>

<Check-button> <Radio-button>

<Tk-canvas-item>

<Frame>

<Label>

...
<Menu>

- 3 -

defines a point characteristics. Two slots are de-
clared: x and y. A set of options can be expressed in
a slot definition. Here, for instance, it is said that
both slots can be initialized upon instance creation
with the keywords :x and :y. Furthermore, it is
asked to the system to generate an accessor function
for each slot.

Creation of a new instance is done with the make
constructor:

(define p (make Point :x 10 :y 20))

Evaluation of preceding form permits to build a
new point and to initialize its slots x and y to 10
and 20.

Reading the value of a slot can be done with the
function slot-ref. For instance,

(slot-ref p ´x)

permits to get the value of slot x in the p point. Set-
ting a slot can be done by using the function slot-
set!. For instance, setting the y slot of p can be
written:

(slot-set! p ´y 0)

Since the accessor y-of has (automatically) been
defined on this slot, its value can also be retrieved
with the following expression:

(y-of p)

Slot setting can be done with the generalized set!
defined in STklos:

(set! (y-of p) 1)

In STklos, execution of a method doesn’t rely on the
classical message sending mechanism as in numer-
ous object languages but on generic functions. The
mechanism implemented in STk is a subset of the
CLOS generic functions. As in CLOS, a generic
function can have several methods associated with
it. These methods describe the generic function be-
havior according to the type of its parameters. For
instance, the x-of accessor defined before is im-
plemented via a generic function. It means that we
can have several methods whose name is x-of.
However, calling x-of with a parameter which is
an instance of a Point will always call the accessor
defined before.

3 Integration of Tk widgets

3.1 The class hierarchy

This section presents how the standard Tk widgets
have been embodied in STklos classes. In this pack-
age, every type of graphical object defined by the Tk
toolkit such as menu, label or button widgets is rep-
resented as a STklos class. All these classes defined
for the Tk toolkit constitute a hierarchy which is
briefly described here. Firstly, all the classes share a
unique ancestor: the <Tk-object> class. This class
defines a set of informations which are necessary to
establish a communication between the Scheme and
Tk worlds. In particular, three slots are defined in
this class:

•The parent slot contains a reference to the ob-
ject which (graphically) includes the current ob-
ject.

•The Id slot contains, the low level Tk-command,
generated by the system to implement the wid-
get. The type of this Tk-command is different for
each class. This slot is heavily used by the meth-
ods which implement the behavior of the object.

•The Eid slot contains the Tk-command which
permit to manipulate the object from the outside
(e.g. to map the object on the screen or to destroy
it). For simple Tk widgets, Id and Eid always
contain the same Tk-command.

Normally, end users will not have to use direct in-
stances of the <Tk-object> class2.

The next level in our class hierarchy defines a fork
with two branches: the <Tk-widget> class and
<Tk-canvas-item> class. Instances of the former
class are classical widgets such as buttons or menus
since instances of the latter are objects contained in
a canvas such as lines or rectangles. All those widgets
are directly implemented as STklos objects in a one-
to-one relationship. A partial view of the STklos hi-
erarchy is shown in Figure 1.

Some points are important to note here:

• There is no difference between items of a can-

2. All classes whose name begins with the “Tk-
” prefix are not intended for the final user.

- 2 -

This paper is divided in three sections. Next section
presents the STk package and its object system. In-
tegration of the standard Tk widgets in STklos class-
es is described in the following section. Last section
is devoted to the definition of composites widgets.

2 Presentation of STklos

Programming with STk can be done at two distinct
levels. First level uses only the standard Scheme
constructs and is classical. Second level gives access
to the object oriented extensions of STk and is far
more interesting. Of course, both levels can be used
at the same time in a program if needed.

2.1 STk: the basic layer

Starting a session with the STk interpreter brings
the user in the basic layer which gives him/her ac-
cess to a complete Scheme interpreter extended to
deal with the Tk toolkit. With a little set of rewriting
rules from the original Tcl-Tk library, and the Tk
manual pages close at hand, one can easily build a
STk program using the Tk toolkit.

Creation of a new widget (button, label, canvas, ...)
is done with special STk primitives procedures. For
instance, creating a new button can be done with

(button '.b)

Note that the name of the widget must be quoted due
to the Scheme evaluation mechanism. The call of a
widget creation primitive, such as button above,
defines a new Scheme object which is called a Tk-
command. This object, which is considered as a new
basic type by the STk interpreter, is automatically
stored in a variable whose name is equal to the sym-
bol passed to the creation function. So, the preced-
ing button creation would define an object stored in
the .b variable. This object is a special kind of func-
tion which is generally used, as in pure Tk, to cus-
tomize its associated widget. For instance, the
expression

(.b 'configure
'-text "Hello, world"
'-border 3)

permits to set the text and background options of
the .b button. As we can see on this example, pa-
rameters must be well quoted in regard with the
Scheme evaluation rules. Since this notation is bare-

ly crude, the Common Lisp keyword mechanism
has been introduced in the Scheme interpreter 1.
Consequently, the preceding expression could have
been written as

(button '.b
:text "Hello, world"
:border 3)

The Tk binding mechanism, which serves to create
widget event handlers follow the same kind of
rules. The body of a Tk handler must be written, of
course, in Scheme. Following example shows such a
script; here, the label .lab indicates how many
times mouse button 3 has been depressed over it.
Increment of button press counter is achieved with
the simple script given in the bind call.

(define count 0)
(label ´.lab :textvariable 'count)
(bind .lab "<ButtonPress-3>"

'(set! count (+ count 1)))

Programming with this kind of constructions is a lit-
tle bit tedious and more complicated than coding
with Tcl since we have to add parenthesis pairs and
quote options values. Its only interest is to bring the
power and flexibility of the Tk world to an applica-
tive language.

2.2 STk: the object layer

STk provides an object extension, called STklos,
which can be loaded dynamically. Using this object
layer permits to gain the benefits inherent to object
oriented programming. Furthermore, since STklos
implementation rely on a meta-object protocol, it is
easy to adapt it to particular needs as we will see in
next section. Before that, we’ll present here the main
constructs available in this object layer indepen-
dently of the Tk toolkit.

Definition of a new class is done with the define-
class macro. For instance,

(define-class Point
((x :init-keyword :x

:accessor x-of)
(y :init-keyword :y

:accessor y-of))

1. A keyword is a symbol beginning with a colon. It can
been seen as a symbolic constant (i.e. its value is itself).

Abstract

STk is a graphical package which rely on the Tk toolkit
and the Scheme programming language. Concretely, it
can be seen as the Tk package where the Tcl language
as been replaced by a Scheme interpreter. STklos is an
object oriented extension of STk. Usage of this object
extension facilitates code reuse and the definition of
new widgets classes.

1 Introduction

Today available graphical toolkits for applicative
languages are often unsatisfactory. Most of the
time, they ask to the user to be a GUI expert who
must cope with details such as server connections
or queue events which are far lower than the con-
cepts such languages vehicle.

Among all the graphical toolkits available in the X
world, the Berkeley Tk package developed by
John Ousterhout merits a great attention
[Ousterhout 94]. This toolkit provides to the user
high level widgets such as buttons, menus or text
editors which permit to build complex GUIs with
little effort. In particular, a little knowledge of X
fundamentals is needed to build a complete run-
ning application with it. Tk package relies on a
simple interpretative language named Tcl
[Ousterhout 90]. This language is a string based
language with a shell-like syntax. If the Tcl lan-
guage is convenient for small scripts writing, its
usage in bigger projects is not suitable, because it

lacks important features such as data structures,
types and objects. Furthermore, its imperative na-
ture complicates the study of some interesting
paradigms such as prototypes, actors or objects
for GUI programming.

All these reasons have conducted to the definition
of the STk graphical package, a package based on
Tk where the Tcl language as been replaced by a
Scheme [Clinger 91] interpreter. Usage of an ap-
plicative language will permit to simplify the im-
plementation of new programming paradigms.
For now, only the object paradigm has been im-
plemented on the STk platform. This object orient-
ed extension, which is called STklos, provides
objects à la CLOS (Common Lisp Object System)
[Steele 90]. More precisely, STklos is much closer
from the objects one can find in Dylan [Apple 92],
since this language is already a tentative to merge
CLOS objects notions in a Scheme like language.

The STklos extension gives to the user a full object
oriented system with meta-classes, multi-inherit-
ance, generic functions and multi-methods. Fur-
thermore, all the implementation rely on a true
meta object protocol, in the spirit of the one de-
fined for CLOS [Kickzales 91]. This model has
been used to embody the predefined Tk widgets
in a hierarchy of STklos classes. This set of classes
permits to simplify the core Tk usage by provid-
ing homogeneous accesses to widget options and
by hiding the Tk widget low level details, such as
naming conventions. Furthermore, as expected,
usage of objects facilitates code reuse and the def-
inition of new widgets classes.

STklos : A Scheme Object Oriented System
Dealing with the Tk toolkit

Erick Gallesio
Université de Nice - Sophia-Antipolis

Laboratoire I3S - CNRS URA 1376 - ESSI.
Route des Colles

B.P. 145
06903 Sophia-Antipolis Cedex - FRANCE

email: eg@unice.fr

