
An Adaptive Package Management System for Scheme

Manuel Serrano

Inria Sophia Antipolis
2004 route des Lucioles - BP 93 F-06902 Sophia

Antipolis, Cedex, France

http://www.inria.fr/mimosa/Manuel.Serrano

Erick Gallesio

Université de Nice – Inria Sophia Antipolis
930 route des Colles, BP 145, F-06903 Sophia

Antipolis, Cedex, France

http://www.essi.fr/˜eg

Abstract
This paper presents a package management system for
the Scheme programming language. It is inspired by the
Comprehensive Perl Archive Network (CPAN) and various
GNU/Linux distributions. It downloads, installs, and pre-
pares source codes for execution. It manages the depen-
dencies between packages. The main characteristic of this
system is its neutrality with respect to the various Scheme
implementations. It is neutral with respect to the language
extensions that each Scheme implementation proposes and
with respect to the execution environment of these imple-
mentations. This allows the programmer to blend, within the
same program, independent components which have been
developed and tested within different Scheme implementa-
tions. ScmPkg is available at:

http://hop.inria.fr/hop/scmpkg

Categories and Subject Descriptors D.2.11 [Software En-
gineering]: Software Architectures—Languages; D.2.12
[Software Engineering]: Interoperability—Interface defi-
nition languages; D.3.2 [Programming Languages]: Lan-
guage Classifications—Applicative (functional) languages

General Terms Design, Languages

Keywords Functional programming

1. Introduction
Scheme is a functional programming language which was
created in the 1970s. Amongst the specific features of
Scheme, we can cite its Lisp like syntax, its (hygienic)
macro system which provides a powerful self-extension
mechanism, its support for continuation management with
it call/cc operator which allows the expression of com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DLS’07, October 22, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-868-8/07/0010. . . $5.00

plex flow control structures, or its support for proper tail-
recursion.

Another characteristic of Scheme is its size: it is incredi-
bly small and compact. The, still official, report [3] describ-
ing the language requires no more than 50 pages, and it
includes a formal semantics! This is sometimes an advan-
tage, for instance, for teaching. This is also a drawback. The
price to pay for this compactness is a severe lack of libraries.
Scheme does not provide the minimal set of primitives re-
quired for writing any modern applications, such as appli-
cations involving network communication, graphical inter-
faces, or multiples threads.

Implementing a naive interpreter or compiler is an easy
task since Scheme is small. Hence, it is no surprise that
Scheme has so many different implementations. They all
have different flavors and tastes. Some promote a read-eval-
print loop interaction. Some promote batch compilations.
Some emphasize easy access to C or Java. etc. Because
the language is unrealistically minimalist, each of its main
implementations provides numerous extensions. As we can
see, Scheme is not a language, but a family of languages.
There are as many dialects of Scheme as implementations
of Scheme and it is uncertain to execute a Scheme program
within a different environment from the one it has been
implemented with. Scheme is yet another tower of Babel!

The Scheme language is minimalist but its main imple-
mentations generally are not. In effect, current Scheme im-
plementations offer means to program the modern appli-
cations depicted above since most of them provide an ob-
ject system, libraries for network programming, multiple
threads, etc. As a consequence, the Scheme community is
in fact fragmented in several implementation communities.

Today it is hardly possible to develop, maintain, and re-
lease Scheme codes that could directly be used by several
implementations although porting such codes from one im-
plementation to another is generally easy since, as we have
seen before, implementations tend to offer similar features
with slightly different interfaces. To our knowledge three en-
deavors, including the present study, are currently ongoing
to tackle the development of Scheme codes that can be run

65

on various implementations. They either follow a centrifugal
approach or centripetal approach.

• The centrifugal approach consists in attracting users by
enriching the language with enough extensions in order
to bootstrap a portable package system. That is, if it is
possible to extend the language with the libraries required
to implement modern applications then the community
could start contributing with new APIs and libraries.

• The centripetal approach consists in accepting the dif-
ferences and idiosyncrasies of each implementation by
proposing a framework that lets pristine Scheme codes
coming from various implementations be integrated in-
side a single application or library.

ScmPkg, our proposal, belongs to the centripetal family. It
is not a language but a mere package repository, a couple
of web services, and a set of conventions and rules. It rests
on a pragmatic approach that could be described as a gentle
bazaar as described in a famous paper by E. Raymond [5].
The general idea is not to try to elaborate a system that
solves all problems that could be raised in all situations. By
opposition, it is a system that tries to solve the problems
that are raised by common practices. The ideas governing
the design of ScmPkg are:

• Let users (i.e., Scheme programmers) continue to main-
tain their private practices. In particular, let users keep
writing their code using the language and its extensions
they like or they are used to.

• Let users keep developing using the environment they
like and when the code is ready, let them transform it into
a package by automatic tools.

• Make the distance from a package to plain Scheme code
so short that it could be almost possible for programming
environments to use packages as regular source files.

ScmPkg does not even pretend to address all the program-
mers problems of portability of Scheme code. It only claims
to permit one to write almost portable packages that can be
used by several implementations, not by enforcing rules or
by imposing language constructions, but by gently begging
for fair use. So, ScmPkg goal does not consist in permitting
the execution of all Scheme codes that are floating around on
particular implementations. Codes which use features bound
to one particular implementation are really unportable and
ScmPkg is helpless for these codes.

We have evidence that the ScmPkg packaging system
can be successful for reusing Scheme codes. Quite easily,
we have been able to feed our packaging system with more
than a hundred packages within a couple of weeks, by sim-
ply grabbing code here and there. The system is operational
for three Scheme implementations: Bigloo, STklos, and, par-
tially, MzScheme. It accepts source code coming from seven
Scheme dialects. Using ScmPkg, we have successfully built

applications blending packages implemented in several of
these dialects.

Reusing code written for a given Scheme dialect may
sometimes lead to poor performances on another implemen-
tation. Sometimes, it may use dialect features that are un-
available or behave incorrectly on this implementation. In
such cases, it is suitable to tune the code for this implemen-
tation. ScmPkg permits one to develop, when needed, im-
plementation specific adaptations that will be applied when
a package is installed on a given Scheme dialect. Hopefully,
not all the packages need to be tuned but this mechanism,
which will be lenghtly decribed in Section 3, ensures a cor-
rect behaviour and correct performances of ScmPkg pack-
ages for each Scheme implementation.

The next sections present the technical aspects of ScmPkg.
First, in Section 2, we present the system per se and a small
application blending two dialects. Then, in Section 3, we
present the Host Adaptation, that is the machinery that is
deployed to let code written for one implementation be used
within another one. Section 4 briefly states the material
which must be developed to offer ScmPkg on a new im-
plementation. Finally, Section 5 presents the current status
of ScmPkg.

2. ScmPkg
ScmPkg is a loose architecture that consists of a web server,
a simple Interface Desciption Language (IDL) for describing
packages, and ad-hoc package managers that are provided by
the Scheme implementations (that we henceforth denote as
Scheme hosts, hosts, or dialects) that support ScmPkg.

• The web server implements a graphical user interface for
browsing the packages, their documentation, and their
source code. It also supports two services that are used for
installing the packages. The first one provides the whole
list of packages and the second implements downloading
of individual packages.

• An IDL describes the material exposed by a package
along with some additional meta information. This IDL
is described in Section 2.3.

• Each Scheme host that supports ScmPkg must provide
a package manager. This is a simple program that is in
charge of preparing a package for its host. This, in gen-
eral, involves downloading, preparing and installing the
code. Optionally it may also compile the code. The pack-
age manager is the equivalent to the apt-get command
of GNU/Linux Debian distributions.

In contrast to other approaches, ScmPkg does not rest on
a unified framework for installing packages. This design
choice is based on the observation that the process of in-
stalling source code is highly dependent on the nature of
the host. For instance, installing a package for a batch com-
piler could mean to download it and its dependencies and
to generate a Makefile for building a library out of these

66

packages. This task can be assumed by an external tool. The
same operation for a system based on a read-eval-print loop,
could be totally different. According to this setting, a con-
venient approach could consist in overriding the require
command (assuming that this form loads a package in the
system) for automatically downloading missing packages.
In this context, no external tool is required. Since the objec-
tive of ScmPkg is to provide a package-management system
that is as transparent as possible, we think that letting imple-
mentors of Scheme hosts choose their own “right way” for
installing packaging is the wisest approach.

After this informal presentation and before digging into
the technical aspects of ScmPkg, we present a complete
example in the next section.

2.1 An example

1: (module gtranslate

2: (import http-utils html-parse)

3: (export (trans text from to)))

4: (define (trans text from to)

5: (html-parse

6: (http-parse-body

7: (http-post

8: "http://translate.google.com/translate_t"

9: :text text

10: :langpair (format "~a|~a" from to)))

11: (lambda (markup attrs body)

12: (if (and (eq? markup ’div)

13: (equal? (assq ’id attrs)

14: ’(id "result_box")))

15: (car body)))))

Figure 1. gtranslate.scm: A Bigloo module

We consider here a simple package named gtranslate
that exports a single function: trans. This function trans-
lates texts written in a natural language into another natural
language. It takes three parameters: the text to be translated,
the name of the source language, and the name of the output
language. This package is implemented in the Bigloo dialect
[6]. The source code adapted to fit the size constraint of this
paper is presented in Figure 1. It may be used as:
(trans (trans "Il pleut" "fr" "en") "en" "es")

==> Llueve

The function trans is a simple wrapper to the Google
translation tools. It merely opens an HTTP connection (line
8), parses the HTML result (line 5) and extracts the result
that is contained in the box (a HTML div element) named
result_box (line 14). This implementation uses several of
Bigloo’s features. First, it is organized as a module that is
declared on line 1.

Regardless of Bigloo’s specific features that are used in
this code, transforming this module into a ScmPkg pack-
age is straightforward. The only mandatory effort is to pro-
vide an interface file, suffixed with .spi and to bundle
the interface and the implementation files in a tarball file

named gtranslate-0.0.2.tar.gz. The interface file is
given Figure 2.

1: (interface gtranslate

2: (version "0.0.2")

3: (language bigloo)

4: (import http-utils html-parse)

5: (export (trans text from to)))

Figure 2. gtranslate.spi: The interface

Since the interface file is a mere export list, it can be
automatically generated from the original source code. This
even holds if, contrary to this example, the original source
code is implemented for a dialect that does not provide
modules. In our example, the interface mirrors the Bigloo
module but in addition it gives important information: line 3
tells in which language (which Scheme dialect) the package
is implemented. In Section 3 we present the meaning of this
statement and how it is handled. For now, it is sufficient to
know that each package is implemented in a Scheme dialect
(which defaults to Scheme R5RS) and that this information
is used by the package managers to adapt the source file
to its host. The interface may also contain optional meta
information such as the the author address or a description of
the package. This information is mainly used by the ScmPkg
Web server.

The implementation of translate is as compact because
it uses various pre-existing packages for dealing with web
programming. These packages are not required to be all
implemented in Bigloo. Indeed, in this particular example,
the package html-parse that provides functions for deal-
ing with URLs is implemented in the STklos dialect [1].
Its implementation is sketched in Figure 3. It may be ob-

1: (define-module html-parse

2: (import xml-parse)

3: (define (html-parse port constructor) ...)

4: (export html-parse))

Figure 3. html-parse.stk: A STklos source code

served that the structure of the STklos module is fundamen-
tally different from the structure of the Bigloo module. i)
STklos modules are closed, i.e., the declarations and def-
initions are lexically nested inside the module declaration.
ii) Import and export clauses are floating inside the module.
That is, they don’t have the syntactic obligation to follow the
module declaration. iii) Export clauses only specify names,
by contrast with Bigloo where they specify full prototypes.
However, in spite of these differences, it is as easy to make
a ScmPkg out of this STklos code. It is given in Figure 4.
Provided with this interface declaration, the package can be
used by any Scheme host, regardless of its actual implemen-
tation language.

For the sake of the example, let us show how this package
can be used in Bigloo. This host comes with a command
named bglpkg that installs packages. It may be used as:

67

1: (interface html-parse

2: (language stklos)

3: (import xml-parse)

4: (export (html-parse port constructor)))

Figure 4. html-parse.spi: An interface

$ bglpkg -v gtranslate # download pkg and its dependencies

http-utils 0.0.2:

@stklos 1.0.0:

html-parse 1.0.0:

google-translate 0.0.2:

xml-parse 1.0.1:

$ make # build gtranslate library

bigloo -c -spi -O3 http-utils.spi -o http-utils.o

bigloo -c -spi -O3 @stklos.spi -o @stklos.o

bigloo -c -spi -O3 html-parse.spi -o html-parse.o

bigloo -c -spi -O3 gtranslate.spi -o gtranslate.o

libgtranslate.so, libgtranslate.a done

$ bigloo foo.scm -lgtranslate -o a.out # compile

$ a.out "il pleut" fr en # run

it rains

The bglpkg tool that is shipped with the Bigloo dis-
tribution, installs packages and it manages dependencies
between packages. Hence, it has downloaded the package
gtranslate and all the packages it recursively depends on.
By convention the packages whose name starts with the @
sign denote languages implementations. All Scheme hosts
that want to use ScmPkg have to provide facilities for in-
stalling packages.

In conclusion, in this Section, we have presented a com-
plete example of a package. We have shown that a package
contains a specification of the dialect of Scheme it is im-
plemented in. We have shown that packages may depend on
other packages that are not required to share the same imple-
mentation dialect. That is, it is possible to blend packages re-
gardless of their implementation language. In particular, we
have shown that the Bigloo compiler is able to compile pack-
ages implemented in its own dialect or in the STklos dialect
granted the code is associated with an interface declaration.

After this introductory example, let us now present the
actual organization of a package and the actual syntax of the
ScmPkg IDL used for describing the interfaces.

2.2 Package architecture

In this section we briefly present the organization of the files
inside a package. As we have already seen, a package pkg
must, at least, contain an interface description located in-
side a file named pkg.spi. Generally, there is an imple-
mentation file associated with the package. This is not a
strict requirement because a package may simply re-export
functions, variables, or macros that are already implemented
elsewhere. We will also see that, with package adaptation, it
may happen that a package has no portable implementation.
The specification of packages does not enforce constraint

on the name of the implementation file but in general, it is
named pkg.scm.

By convention, the tools composing the ScmPkg systems
search for some extra files.

• The file doc/pkg.wiki, doc/pkg.txt, and doc/pkg.-
html are considered as documentation. According to its
general principle, ScmPkg does not impose any particu-
lar file format for the documentation. It encourages the
adoption of the wiki syntax because it is compact and un-
obtrusive but it also supports plain HTML and text.

• The files test/pkg-test.spi and test/pkg-test.-
scm, if present, implement a test suite for the package.
These can be used to automatically test a package on a
Scheme host. If a package provides tests, they can be run
by the ScmPkg host package manager.

2.3 ScmPkg Interface Description Language

In order to facilitate code reuse, ScmPkg package interface
descriptions located in a file different from the actual im-
plementation source code. This permits users to grab an ex-
isting Scheme source file and to augment it with the infor-
mation required by ScmPkg without editing the initial file.
The role of the package interface consists mainly in provid-
ing five pieces of information: i) the name of the package, ii)
the packages it depends on, iii) the variables, functions, and
macros it exports, iv) the dialect it is implemented in, v) the
location of the actual source file.

The main syntax of a package thus described by the
following grammar:
<intf> −→ (interface <pkg-name> <intf-clause> *)

<intf-clause> −→ <language-clause>

| <meta-clause>

| <import-clause>

| <export-clause>

| <extension-clause>

<extension-clause> −→ (<symbol> ...)

The language clause specifies in which language a pack-
age is implemented but it also gives information on the sub-
set of that language that is actually needed. For instance, the
following declaration:
(interface pkg (language bigloo parser match))

introduces a package implemented in the Bigloo language
that, in addition to the basic support, also requires the Bigloo
parsing and pattern matching facilities. Section 2.4 will fo-
cus on languages and language features. We only present
here their syntax which is defined by:
<language-clause> −→ (language <name> <feature> *)

The meta-clause gives information on the package it-
self such as the version number or the name of the imple-
mentation file. It is important in the context of ScmPkg not
to make assumptions on the names of the files. Since we
want to reuse code as is and since various hosts use various
conventions (e.g., Bigloo assumes that source files are suf-

68

fixed with either .scm or .bgl, MzScheme assumes a suffix
.ss, STklos uses .stk, etc.) it is necessary to introduce cus-
tomization of the file names.
<meta-clause> −→ (suffix <string>)

| (source <file>)

| (version <version>)

| ...

<file> −→ <string>

<version> −→ <string>

It is possible to import a whole package (and use all
its exports) or to restrict the import to some bindings. The
syntax of an import clause is:
<import-clause> −→ (import <import> *)

<import> −→ <pkg-name>

| (<pkg-name> <symbol> +)

ScmPkg supports two export forms. A direct export that
exports bindings defined in a package. An indirect export
that lets a package export bindings provided by another
package.
<export-clause> −→ (export <export> *)

<export> −→ <direct-export>

| <indirect-export>

<direct-export> −→ <variable>

| <function>

| <macro>

| <syntax>

<indirect-export> −→ (from <pkg-name> <export> *)

A binding is exported with its prototype. That is, the
export clause distinguishes between variables, functions, and
macros. In the case of a function, the export specifies the
full prototype of the function. This gives opportunities to
optimizing compilers.
<variable> −→ <ident>

<function> −→ (<ident> <r5rs-formals>)

| (<ident> <srfi89-formals>)

<macro> −→ (macro (<ident> <r5rs-formals>))

<syntax> −→ (syntax <ident>)

R5RS formal parameter list corresponds to traditional
Scheme code. It supports fixed arity functions or variable
arity functions. SRFI89 formal parameter list is an extension
to R5RS that correspond to the DSSSL [2] language with
a slightly diverging syntax. It supports named and optional
parameters for functions.

2.4 The Languages

A Package is implemented in a language. A Language is
implemented by a package that, by convention, is named af-
ter the language name prefixed with the @ sign. Specifying
that a package pkg is implemented in the language lang is
roughly equivalent to specifying that pkg imports @lang. In
addition, the language interface clause gives information
about the nature of the implementation. For instance, it sets
a default suffix for the source files. ScmPkg also offers op-
portunities to apply transformations to a source code. Due to
space constraints, this is not presented in this paper. For now,
we can consider a language declaration as a mere shorthand
for an import and a suffix declaration. So we can consider

that the interface intf1 and intf2 given in Figure 5 are
equivalent.

(interface intf1 (interface intf2

(language stklos) (import @stklos)

(export (fun1 a b))) (suffix "stk")

(export (fun1 a b)))

Figure 5. Two equivalent interfaces

Languages are used in ScmPkg for ensuring portability
between packages. They implement the minimal glue that is
needed for reusing code from one dialect into another one.
In Section 2.1, we have seen an example using a package
implemented in the stklos language. Let us study now the
implementation of that language. As presented, STklos pro-
vides modules that are introduced by the define-module
form. These modules embed the definitions of functions,
variables, and macros. All Scheme dialects but STklos must
simply extract these definitions and ignore the module dec-
laration itself. This can be easily implemented with a macro.
Hence, the package interface exports the macros needed for
erasing the STklos module idiosyncrasies. Its interface is
presented in Figure 6. An implementation of that package

(interface @stklos

(export (macro (define-module name . body))

(macro (export . rest))

(macro (import . rest))))

Figure 6. @stklos.spi: The interface of the STklos lan-
guage

is straightforward and quite standard. It is given in Figure 7.

(define-macro (define-module name . body) body)

(define-macro (export . rest) #f)

(define-macro (import . rest) #f)

Figure 7. @stklos.scm: An implementation of the STklos
language

We have found it useful to split language specifications
in small pieces. This has two advantages. i) It allows a pack-
age to use only the relevant parts of the library of the system
it is implemented in. ii) It allows us to provide incremen-
tal support for each language. First we can provide a mini-
mal support for each system and then, on demand, we add
new features to that language by the mean of new packages.
For instance, as mentioned in Section 2.3 Bigloo supports
parsing facilities. Not all packages implemented in Bigloo
need them. So they are not specified in the package imple-
mented the bigloo language. They are specified in a pack-
age named @bigloo-parser that is developed and main-
tained independently of the first one. Language features may
be specified on the language interface specification. They
are handled as a shorthand for an export. That is, the two
interfaces presented in Figure 8 are equivalent.

69

(interface intf-avec (interface intf-sans

(language bigloo parser)) (language bigloo)

(import @bigloo-parser))

Figure 8. Using language features

In Section 3.1, we will see that host adapters can elimi-
nate the performance penalty that could be associated with
the language abstraction promoted by ScmPkg. We will see
that, in general, a package can be optimally compiled or in-
terpreted by a host even if that package was not initially in-
tended to be used with that system.

3. Host Adaptation
Before being compiled or interpreted a package may have
to be adapted to a Scheme host. That is, some parts of its
interface and its implementation may have to be rewritten.
It is handled automatically by the host package manager.
This process is at the heart of the whole system. The gen-
eral idea of adaptation is that Scheme hosts are compati-
ble to a large extent. They all support a common set of ex-
tensions even though they don’t share the same interfaces.
Sometimes, reusing a source code implemented for a host
H1 within a host H2 requires us to provide glue that is made
of additional functions and macros. It may also require us to
override some definitions of the original source code (either
because H2 allows a faster implementation or because the
H1 implementation uses features that have no counterpart in
H2). ScmPkg proposes a methodology for automatically pro-
cessing host adaptation. This is the subject of this section.

3.1 The Adapters

In order to proceed to package adaptation, a ScmPkg pack-
age manager searches for an adapter. An adapter is a bundle
of files which is generally stored along the package itself on
the ScmPkg server. Each file of an adapter contains rewrit-
ing rules of the initial package interface and implementation.
The name of an adapter bundle is obtained by concatenating
the name of the package, the _ character, the name of the
host, and the package version number. So, the name of the
adapter for the STklos host of the package pkg version 0.0.2
is pkg_stklos-0.0.2.tar.gz.

An adapter is a set of files that are used to rewrite the
original interface and implementation. Each package man-
ager is free to implement and support its own rules but we
also propose a set of rules that covers all the possible needs
for rewriting we have met so far. These rules are shared by
Bigloo and STklos. They are presented in the rest of this Sec-
tion. In this whole section we assume a package pkg whose
interface file is named pkg/pkg.spi and its implementation
lies in pkg/pkg.scm.

We have found of premium importance to release adapters
independently of packages. This allows a lightweight devel-
opment process that is impossible with conditional com-
pilation. A programmer may implement and maintain one

package on a host H1, totally ignoring that his package is
adapted to other hosts. Independently, a user of the host H2
could be interested in that package. If this package needs
to be adapted for H2, he can write an adapter and release it
independently of the package. The two authors don’t have
to synchronize. The developer of the package does not have
to integrate in his development tree the modifications re-
quired for hosts that he may never install on his machine.
The developer of the adapter does not have to wait until his
modifications have been integrated in the main development
tree of the package to offer it to the H2 community.

3.2 Implementation Adaptation

In this Section we present the adaptation of the implemen-
tations. In the next section we will present the adaptation
of the interfaces. For the sake of simplicity, we will only
present the adaptation in the context of the Bigloo system.
The very same principles apply to other systems.

3.2.1 Rewriting the whole package

Bigloo compiles modules. Its future version will also sup-
port natively the compilation of interfaces. This is simply
implemented inside the compiler by a macro that expands
the interface form as defined in Section 2.3 into a plain
module clause declaration. This expansion is so simple and
direct that it does not deserve any presentation here.

A common adaptation framework for Bigloo consists in
simply removing the entire interface and implementation of
the ScmPkg package. This, for instance, corresponds to sit-
uations where Bigloo natively supports the features exposed
by a package (e.g., Bigloo native SRFIs). This first rewriting
is specified by the rule 1 defined as:

Rule 1: If the file pkg/bigloo/pkg.bgl exists in the
adapter, remove the files pkg.spi and pkg.scm and use
that file instead.

Even if this rule is extremely simple, let us apply it to an ob-
vious example. Each language package is natively supported
by one host. For instance, the @bigloo package that imple-
ments a minimal Bigloo runtime is de facto supported by
the Bigloo compiler. So, when Bigloo compiles a package
that depends on the @bigloo package (i.e., a package that
is implemented in the bigloo language) it must then also
compile that module! Since, by construction, Bigloo na-
tively supports the bigloo language, the package @bigloo
has to be replaced with an empty specification. Hence the
Bigloo adapter @bigloo/bigloo/@bigloo.bgl is defined
as:
(module @bigloo)

Of course, some situations are not as simple and the
substituted file contains actual code.

3.2.2 Adding extra code

Sometimes, it may be necessary to inject code in the imple-
mentation before or after pkg.scm.

70

Rule 2: If the file pkg/bigloo/pkg-before.scm exists in
the adapter, it is inserted in front of the initial file pkg.-

scm. If the file pkg/bigloo/pkg-after.scm exists, it is
appended to the source file.

Let us illustrate this adaptation with one example extracted
from the kishi package which is a simple chess game, im-
plemented in the Chicken Scheme dialect. Its interface is:
;; the source file is implemented in Chicken and it

;; uses several standard functions of that dialect

(interface kishi

(language chicken level2)

(import srfi6 srfi13 srfi26)

(export (kishi args)))

The function kishi implements And/Or trees and exten-
sively uses continuations to abort computations. Bigloo sup-
port for continuations is extremely inefficient. However, it
supports fast exceptions. So, in order to improve the per-
formance for Bigloo, it is valuable to replace the contin-
uations with exceptions. This can be easily implemented
by adding a simple macro definition in front of the initial
source code. This is the role of the file kishi/bigloo/-
kishi-before.scm:
(define-expander call/cc

(lambda (x e)

(match-case x

((?- (lambda (?var) . ?body))

(e ‘(bind-exit (,var) ,@body) e)))))

This defines an expander named call/cc that actually
overrides the definition of the standard function. It rewrites
any calls to call/cc into exception blocks (bind-exit is
comparable to the Java’s try block). Of course, this trans-
formation is, in general, incorrect. It can be applied to the
kishi package only because continuations are used in their
dynamic extend to abort computations. Note also, that this
overriding only applies to the kishi package and an appli-
cation using this package can still use the call/cc primitive
in all its glory in other packages, if needed.

With this example we have demonstrated that host adap-
tation can be used to tune an implementation for improving
the performance on a host, without modifying the original
source code. This is another important property of ScmPkg:
with the framework we propose, in general, the packages can
be tuned for specific hosts and specific applications. Hence,
they are efficient on all platforms. We think that this is a
fundamental property. It is mandatory to guarantee that the
package organization does not impede the performance of
the application. Otherwise, users would be reluctant, with
reason, to use such a system.

3.2.3 Replacing the implementation

In rare situations, it might be necessary to replace an en-
tire implementation. This corresponds to situations where a
package implementation uses a specific feature that is only
available on some hosts. This rewriting is the purpose of the
following rule:

Rule 3: If the file pkg/bigloo/pkg.scm exists, it replaces
the original package implementation.

This situation is of course the least satisfying, since if forces
a complete rewrite. However, the adaptated (or rewritten)
package can transparently be integrated with the other pack-
ages of an application.

A more common case of adaptation consists of slighly
modifying the initial source code for changing not the entire
implementation but only a couple of definitions. This is the
purpose of our fourth adaptation rule.

Rule 4: If the file pkg/bigloo/pkg-override.scm exists
in the adapter, all the definitions found in this file shadow
the corresponding ones in the original source code.

Generally, only a couple of definitions are present in the
override file; all other definitions of the package implemen-
tation are left unchanged.

We illustrate this adaptation with the match package
whose implementation consists of a code provided by A.
Wright that gave to the community a mostly portable imple-
mentation of pattern matching in Scheme. The interface for
that package is:
(interface match

(export (match-error obj)

(macro (match . args))

(macro (match-lambda . args))))

As most Scheme code, the pattern matcher has to deal
with errors. Unfortunately, Scheme does not provide any
official mean for raising errors. Hence, portable Scheme
codes have to simulate raising an error. In the case of the
match package, it is implemented as:
(define (match-error obj)

(display (format "*** MATCH FAILED: ~a" obj))

(/ 1 0))

This implementation displays an error message and raises
a native error. This trick is common because there is no bet-
ter way to implement portable errors. However, it is also
quite inconvenient because it does not leave opportunity to
the rest of the program to intercept the error and to make
something useful out of it. The system will think a floating
point exception has occured instead of a pattern matching
error! This situation is very common because it is in the very
nature of library functions to raise exceptions that are ex-
pected to be managed by the main program. Bigloo, as most
Scheme hosts, provides functions for raising and catching
exceptions. So we can adapt the definition of match-error
to Bigloo by replacing the original definition with a better
one that raises a true exception:
(define (match-error obj)

(raise (instantiate::&match-error

(proc ’match)

(msg "match failed")

(obj obj))))

With this example we have demonstrated that using the
ScmPkg host adaptation it is possible to naturally blend

71

packages implemented in different dialects. In particular, we
have shown how the errors and exceptions of the packages
can be mapped to the native exception mechanism of the
Scheme host.

3.3 Interface Adaptation

As it may be required to modify the implementation of a
package, it may also be required to change its interface. For
instance, it can be required to erase an export for a host
that provides natively a function or a macro or it can be
useful to add ad hoc annotations to an export in order to give
opportunities to an optimizing compiler. This adaptation of
the interface is described in this section.

3.3.1 Adapting the interface

The rules for adapting a package interface are similar to
the rules for adapting an implementation. The simplest one,
replaces a whole package interface.

Rule 5: If the file pkg/bigloo/pkg.spi is present, it re-
places the whole package interface.

This is a coarse-grain rule that, hopefully, is not often used.
The most useful rule is the following:

Rule 6: If the file pkg/bigloo/pkg-after.spi is present,
its content is appended to the package interface.

This rule allows one to inject extra clauses to a package in-
terface. Combined with the host interface extensions this
rule permits one to precisely tune a package interface. In
particular, it permits one to add annotations that opens op-
portunities for optimizations.

3.3.2 Host interface extensions

As we have presented in Section 2.3 the syntax of the in-
terface provides an open door to extensions. This is used
for adapting the interfaces. This can either be required if
the package contains incompatibilities with a given host or
simply for improving the performance. In order to simplify
the current presentation we will keep focusing on the ex-
tensions provided for the Bigloo system. Adapting the rules
we are going to present to another Scheme host is, however,
straightforward. One of the goals of this section is to demon-
strate that the portability model proposed by ScmPkg does
not impact the performance. This section does not contain
any material essential to the understanding of the overall ar-
chitecture of ScmPkg. Hence, it can be skip for a first read.

The general idea of the <extension-clause> rule of
the syntax of the interface is to permit annotations that are
ignored by all hosts but one. In the case of Bigloo, this
extension is marked by the bigloo keyword. This is denoted
by a new rule added to the syntax of the IDL:
<extension-clause> −→ (bigloo <bigloo-module> +)

| (<symbol> ...)

<bigloo-module> −→ (module-override)

| (export-override <bigloo-export> +)

| (export-replace <replace-clause> +)

<replace-clause> −→ (<ident> <bigloo-export>)

<bigloo-export> −→ See the bigloo user manual

Bigloo handles these extensions as follows:

Bigloo Rule 1: If module-override is present in the
bigloo extension clause, the Bigloo module declaration
found in the implementation file replaces the whole pack-
age interface.

This rule is frequently used for transforming an existing
Bigloo module into a ScmPkg package.

The package interface is less precise than the Bigloo
module declaration. In particular, because the latter contains
type annotations and other information useful for the com-
piler. In order not to impede the performance when a Bigloo
module is transformed into a package, it is thus important
not to lose this extra information. For the sake of the exam-
ple, let us assume the following Bigloo module:
(module xml-parse

(export (xml-parse::list in::input-port k::proc)))

This module exports one function that accepts an input
port and a procedure as parameters and returns a list. This
module can be translated in a package whose interface could
be:
(interface xml-parse

(bigloo (module-override))

(export (xml-parse in k)))

Without the (bigloo (module-override)) clause,
the type annotations would be lost and the compiler would
be no longer able to statically type check a package import-
ing xml-parse. With the module-override clause, the
compiler ignores the package interface and actually uses the
more precise module declaration.

Bigloo Rule 2: An export-override clause overrides
the export clause of the package interface with a more
specific Bigloo one. The rest of the package interface is left
unchanged.

This rule is used to change the prototype of an export. It can
be used for adding type annotations or compiler annotations
such as inlining information. For instance, in Section 2.1,
Figure 4 we have presented a package implemented in STk-
los for parsing HTML. In order to improve the performance
and the error messages produced by the compiler it could be
useful to add type annotations to the function html-parse.
This can be accomplished with a export-override clause
such as:
(bigloo

(export-override

(html-parse::list in::input-port k::procedure)))

This clause takes place in the Bigloo interface adapter,
that is in the file html-utils/bigloo/html-parse-after.-
spi.

72

Bigloo Rule 3: An export-replace clause replaces an
export clause with a different one or it simply erases an
export clause.

The export-replace Bigloo extension clause is a gener-
alization of the export-override clause. By contrast with
the former, it allows a clause to remove an export while the
previous is only able to change it. Let us illustrate this new
functionality with an example. The package @mzscheme im-
plementing a subset of the MzScheme dialect in ScmPkg ex-
ports a random number generator. Bigloo already provides
such a facility with the very same interface. The Bigloo
adapter for the @mzschememust then erase that export. This
is accomplished the using a export-replace rule in the
file @mzscheme/bigloo/@mzscheme-after.spi:
(bigloo

(export-replace

(random #f)))

All the others functions, macros, and variables exported
by the @mzscheme module are left unchanged.

In this section, we have shown how package interfaces
can be adapted to Scheme hosts. In particular, we have
demonstrated that the abstraction layer introduced by the
package interfaces does not jeopardize the performance of
a system because the interface adaptation permits a host to
add the annotations that are required by its optimizer.

4. ScmPkg Cost of Entry
Up to now, we have been able to blend packages written
in the following Scheme dialects: Bigloo, Chicken, Gambit,
Mzscheme, R5RS, Snow, and STklos. However, currently,
the ScmPkg packaging system is fully operational on only
two hosts, Bigloo and STklos, and some partial support is
also available for Mzcheme. This is clearly not sufficient
and we know that the system must be adapted to other
hosts in order to achieve the goal it has been assigned to.
In this section, we expose the different tasks that need to be
completed in order to offer ScmPkg on a new host.

The first task consists in supporting the ScmPkg IDL, that
is the interface form, in the new host. This can be im-
plemented by a macro which rewrites the interface form
into directives for the underlying host. If this host provides a
module system or namespaces, this macro is simple to write.
For instance, the whole support of the ScmPkg IDL for STk-
los, is less than 250 lines long. For systems which don’t have
a module system or namespaces, this task can be tedious be-
cause an ad hoc mechanism for isolating identifiers inside
interfaces has to be invented. Probably ScmPkg is probably
not well adapted to such systems. However, amongst the cur-
rent mainstream Scheme implementations, SCM seems to be
the only one which is in this case.

Native support of the ScmPkg IDL permits us to make
small experiments with the system, but we have seen that
the package manager plays a key role for adapting a package
to the host. The complexity of the package manager depends

on the level of integration envisioned for this tool. However,
the rules shown before for package adaptation are simple
to implement since they consist mainly in file copying and
renaming.

Finally, to support all the packages provided by the
ScmPkg repository, a final task consists in writing adap-
tations for the languages supported by ScmPkg. These adap-
tations are generally straightforward to implement since they
only involve simple macros such as the ones shown Figure
7. To give an idea, the average length of the language adap-
tations we have written so far is around 200 lines per host.

As we can see, adding support for ScmPkg to another
Scheme system does not require a tremendous work to im-
plementors because there is no need to modify the pack-
ages individually. Only the packages implementing lan-
guages need per-host attention. We hope that it is suffi-
ciently low to convince the Scheme dialects authors, or ad-
vanced users of their community, to invest in the implemen-
tation of adapted ScmPkg tools.

5. ScmPkg Status and Related Work
ScmPkg is still young and until recently each new version
was deeply incompatible with previous versions. The me-
chanics for host adaptation as presented in the paper have
only been designed after several endeavors that have shown
to be inconvenient and tedious to use. Hence, ScmPkg has
not been yet publicly announced so we don’t have yet ex-
ternal users contributions. The only packages that popu-
late the actual system have all been ”assembled” by the au-
thors. However, we have paid attention to exercise as much
as possible the portability supported by ScmPkg. We have
ported existing Scheme code that was coming from different
sources.

Currently, ScmPkg contains approximately 100 packages
amongst which we have ported code coming from seven
different hosts. For each package, we have refrained from
manually tuning the original source code. We have pushed
the host adaptation to its limits, in order to validate our ap-
proach. We have had varying degrees of success depending
on the source of the packages. For each of these system we
have implemented corresponding ScmPkg language and we
have been able to automatically import packages.

5.1 SRFI

Several attempts have already attempted to build a commu-
nity of users for Scheme. The Scheme Request For Imple-
mentation process is of one them. It has been initiated at
the end of the 90’s. It claims to be an “approach to help-
ing Scheme users to write portable and yet useful code. It
is a forum for people interested in coordinating libraries
and other additions to the Scheme language between imple-
mentations”. Today, there are approximatively ninety SRFIs.
Few of them provide libraries and the ones that do, actually
provide libraries for classical manipulation of data structures

73

(e.g., list and string manipulation, hash tables, vectors of all
kinds, etc.). The majority of SRFIs specifies syntactic ex-
tensions to the language. While this can be useful, it does
not help for writing the applications we want/need to write
today.

The SRFI process has proven to be useful for normalizing
the usages for the extensions that are present in the major
Scheme implementations (e.g., hash tables or string ports).
However, nine years after the first SRFI submission, we
think that the whole SRFI process has failed at being a
repository of useful APIs for Scheme.

The SRFI process was probably developed too late.
Scheme was more than twenty years old when the SRFI
process started. As a consequence, most of the major fea-
tures necessary to build modern applications were already
present in the main implementations under a form or another.
As a consequence, it is very difficult to ask implementors to
change features that are central for their implementation. In
this respect, we think that this is enlightening to see that the
only proposition for defining an object system (SRFI-20)
was withdrawn after a discussion involving four comments
(none being really negative), whereas the SRFI (SRFI-48)
which define the format function was accepted after more
than 60 comments. To date, nobody was courageous enough
to propose a SRFI for important aspects such as modules or
network programming which are really primordial for writ-
ing modern applications. This enforces our opinion that it is
very difficult to impose new programming habits to Scheme
users and that a solution built around existing systems is
preferable.

SRFIs exposes variables, functions and syntaxes that can
handled by ScmPkg interfaces. Since the SRFI process re-
quests a reference implementation, adapting a given SRFI
to ScmPkg is straightforward: it simply consists in bundling
this implementation with an interface declaration file (a .-
spi file).

5.2 Dedicated Package Management Systems

Several implementations of Scheme propose their own pack-
age management systems. Chicken with its Eggs Unlimited
has been one of the first systems to propose a packaging sys-
tem. It contains many useful packages for modern program-
ming. For several years, it has been imitated by PLaneT [4]
a deployment system for PLT Scheme. This system too con-
tains numerous valuable packages. The problem with these
systems is that while they definitively add extra value to their
respective implementation and to their own community of
users, they do not unify the Scheme community, in general.
The packages they deliver are intended exclusively for their
systems.

5.2.1 Eggs Unlimited

From Chicken’s Eggs Unlimited we have been able to
reuse the packages implementing network protocols (ftp, irc,
pop3, ...). We have focused on these packages because they

implement useful non-trivial facilities and because they are
fully implemented in Scheme while many Chicken packages
are actually implemented, partially or integrally, in C.

In order to reuse these packages we have implemented
a small subset of the Chicken’s runtime system inside the
@chicken language. Since these packages deal with net-
work programming, we have also exported the Chicken net-
work facilities in the @chicken-net package. Once this has
been accomplished, creating the ScmPkg packages has only
required a couple of minutes.

5.2.2 PLaneT

PLaneT is a repository of packages for PLT Scheme. For
this system, we have created an extension to the package
interface syntax. We have created a new entry in the syntax
of the interface that allows interfaces to refer to a planet from
a ScmPkg package exactly as the PLaneT users are used to.
For instance, we write:
(interface password

(planet

(require

(planet "password.ss"

("schematics" "password.plt" 1 0))))

(language mzscheme)

(import srfi13 planet-macros random leet)

(export max-length min-length

(string->password string)

(make-passwords . args)))

This planet extension tells the host package managers
to download the package from the PLaneT web site and
install it locally. We have been able to reuse several PLaneT
packages without even editing them and even though they
use MzScheme extensions such as its infix syntax. Currently
our implementation of the MzScheme language is a little bit
too restricted to import many packages. We have promising
results but we also must put more energy for reusing the
majority of the packages proposed by this system.

5.3 Centrifugal approaches

Two main projects have adopted the centrifugal approach:
the Snow project and the Revised 6 Report on Scheme. They
are discussed in this Section.

5.3.1 Snow

Snow is a portable packaging system for Scheme. It relies on
an extension of the Scheme programming language for pro-
viding portable packages. Snow is an entire package man-
agement system. In particular, it proposes its own portable
way for installing and using packages. The idea governing
the system is to make the Scheme host as transparent as
possible. In other words, one should use Snow packages in
the very same way, whatever the Scheme host. As a con-
sequence, if a user adheres to the Snow’s conventions and
restricts himself to only use them, it is likely that his pro-
gram can run on another host running Snow. This goes in
the exact opposite direction from ScmPkg, where the user is

74

free to use the features of his host system and let the tools
offered by ScmPkg do the necessary adaptation for him.

Snow does not propose host adaptations. It relies exten-
sively on conditional compilation directives. We think that
this approach is error-prone and hard to maintain. It enforces
a centralized heavyweight architecture for packaging and re-
leasing codes that are avoided with host adaptation.

Since Snow offers, by nature, a well formalized system
and since it presents interesting packages, we have imple-
mented a simple tool (entirely with ScmPkg packages) that
automatically generates ScmPkg interfaces from Snow de-
scriptions. Hence, via ScmPkg we deliver all the Snow pack-
ages. That is, we have successfully bootstrapped Snow in
ScmPkg. In particular, we are able to natively compile all
the Snow packages with Bigloo and STklos, via ScmPkg.

5.3.2 R6RS

R6RS is the next evolution of Scheme. It should be com-
pleted mid 2007. It extends the language in two directions: a
new core language and a new standard set of libraries. While
no R6RS implementation exists yet, we have started to im-
plement partial support within ScmPkg.

First, we have implemented a @r6rs package that con-
tains the new function and syntax definitions of the R6RS
core language. We plan to implement the additional li-
braries with language features. For instance, we have al-
ready implemented the (r6rs case-lambda) library as
the @r6rs-case-lambda package. This approach has some
limitations.

• The R6RS library form is a more powerful than the
ScmPkg interface. It supports renaming, partial im-
port and automatic prefixing. These have no direct coun-
terparts in ScmPkg. but they can still be encoded in that
system, at the price of tedious manual adaption.

• The R6RS import and export levels have no counterpart
in the ScmPkg’s IDL and we don’t plan to support them
in a near future. This implies that the language used for
implementing ScmPkg macros is restricted to the lan-
guage natively supported by hosts. So, writing a portable
ScmPkg macro requires attention but, on the other hand,
the macro system for ScmPkg is simpler than the R6RS
one.

• Unicode and the full numerical tower require native sup-
port from hosts.

Consequently, ScmPkg will probably not permit one to use
any (future) R6RS code within a R5RS implementation, but,
at least, it will allow one to use the whole R6RS standard
library set.

5.4 Centrifugal vs centripetal approach

In this Section, we show how the systems based on the cen-
trifugal approach are unable to tackle some subtle problems.

The study of the last Snow released packages available on
the Snow repository unveils difficult issues. These packages
are due to external contributors, that is people not involved
in the development of Snow nor ScmPkg. These packages
have been built on top of the Gambit implementation. Even
if these packages are disguised in Snow packages they, for
now, remain un-portable and they are only operational on
Gambit, since they use functions that are specific to that host.
Fixing this problem with Snow is not so easy. There are at
least three solutions.

• Modify the implementation of the packages for adding
conditional compilation directives. This is painful and
puts an heavy burden on the shoulders of the implemen-
tors of these packages. These users must now be turned
into specialists of all possible Scheme implementations
because they must know now precisely the boundaries of
Scheme R5RS and they must know how to rewrite Gam-
bit specificities for each of the systems Snow supports.
We think that this is unrealistic.

• Another solution could consist in statically detecting that
a package uses variables not defined in Scheme R5RS
nor the Snow corpus and to reject it. This requires a non
trivial program analysis.

• A last possibility consists in adding new features to
Snow for abstracting these Gambit specificities and then,
rewriting the faulty packages. This requires a lot of en-
ergy and a long development cycle.

On the other hands, solving this problem with ScmPkg
has been straightforward: we have created a new language,
@gambit, and the adaptors for Bigloo and STklos. This task
has taken a couple of minutes because the adaptors actu-
ally only contain aliasing. That is the specificities of Gambit
used in the packages already exist in Bigloo and STklos un-
der different names. If a new host adheres to ScmPkg, it will
have to implement its own adaptor for the Gambit language
but this will be developed independently of the packages
themselves at a pace chosen by the maintainer of the new
host.

We now exhibit a second problem of the centrifugal ap-
proach that we think is harder to deal with: some R5RS codes
are not portable. That is, two R5RS implementation may de-
liver different results when evaluating the same expression.
When populating the ScmPkg repository with Bigloo mod-
ules, we have found the following piece of code:

(quotient (inexact->exact a) 10)

This code uses the standard R5RS primitives quotient
and inexact->exact. It seems to be valid but in fact it
has a flaw. This code uses a Bigloo idiosyncrasy where the
function inexact->exact returns the integer obtained by
truncating the real number a. On Scheme implementations
provided with rational numbers, this function returns a ratio-
nal which cannot be passed to the function quotientwhose
both arguments must be integers. So, in spite of its inoffen-

75

sive appearance, this code is not portable. This rather subtle
problem is difficult to detect statically. A possible correction
for this module could be to replace the faulty code by:

(quotient (truncate (inexact->exact a)) 10)

However, this is not practical for two reasons. i) It re-
quires us to change the original source code. ii) It is very
likely that this pattern is used several times and all occur-
rences must be fixed too. A better solution consists in adding
the following definition to the package @bigloo, which is in
charge of the Bigloo language:
(define inexact->exact

(let ((i->e inexact->exact))

(lambda (real)

(i->e (truncate real)))))

This new definition, of inexact->exact will be used
only by hosts that support rationals for packages written in
Bigloo. A host not supporting rationals could also adapt this
definition in its private adaptation of the @bigloo package.
This approach definitively ensures that this function, when it
appears in a Bigloo package, will have the correct behaviour
when used on a host which is not Bigloo. By extension,
one could imagine to use host adaptation for mimicking a
bug of a Scheme host. That is, here again, we think that
the centripetal approach used by ScmPkg gives pragmatic
tools to fix the kind of difficult issues that the centrifugal
approach, by construction, refuses to address.

6. Future Work
Currently, ScmPkg is supported by two Scheme hosts:
Bigloo and STklos. They have sufficiently different char-
acteristics for demonstrating that the system can be used in
various contexts. Bigloo is a batch compiler. STklos is based
on an interpreter and it relies on a read-eval-print loop. How-
ever, in order to demonstrate the validity of the approach, we
have to make additional experiments. In particular, we are
developing a prototype for MzScheme. This ScmPkg im-
mersion will use an approach different to the one chosen
for Bigloo and STklos. In order to fit into the MzScheme
philosophy, we are implementing ScmPkg by overriding its
require form that is used to import a module. That is, we
are adding a new syntax for require that automatically
downloads and adapts a package if not present in the cache.
From a MzScheme point of view, using a ScmPkg will be
strictly equivalent to using a PLaneT package. We already
have an operational version of that port but it still need to be
polished before being released.

In addition to porting ScmPkg to new Scheme hosts, we
also have to add an additional feature that is not tackled by
the first version: currently ScmPkg does not allow the pro-
grammer to specify packages that export types! That is, cur-
rently an interface may only export functions, variables, and
syntax. This is enough for coping with Scheme R5RS and
many extensions. In particular, this is sufficient for export-
ing records because most of the time they come with a func-

tional interface. Hence, exporting a record is equivalent to
exporting its accessors, creators, and predicate.

7. Conclusion
In this paper we have presented ScmPkg, an adaptive pack-
age management system for Scheme. Contrary to other ap-
proaches this system is agnostic with respect to linguistic ex-
tensions and to execution environments. It proposes a frame-
work for specifying host adapters. That is, when a package is
installed, before being compiled or loaded, it is first adapted
to a specific Scheme implementation. Using this method-
ology, it is now possible to blend, within a single applica-
tion, source codes that have been developed using differ-
ent Scheme systems. We have successfully compiled appli-
cations blending Bigloo, Chicken, MzScheme, and STklos
codes.

In the paper, we have shown that the adaptation also
allows one to tune packages for performance. That is, it
enables us to take benefit of the specificities of each Scheme
hosts. We have also shown that it gives a framework for
coherent handling of exceptions and errors.

Currently, ScmPkg has been ported to Bigloo, an opti-
mizing compiler, and to STklos, a byte-code interpreter. A
prototypical version for MzScheme is under development.

At first glance, the system may look overly simple. It re-
lies on a small IDL for describing packages and a set of loose
rules for organizing them and for implementing adapters.
However, it took us several monthes and many endeavors
to reach that simplicity. In particular, the first version of the
IDL was much richer and it was then difficult to describe har-
moniously Scheme codes coming from different systems. It
took us a lot of time to understand that language neutrality
was absolutely required and that it was mandatory to impov-
erish the IDL as much as possible.

8. References
[1] Erick Gallesio – STklos Reference Manual –

I3S/RR-2004-41-FR, I3S CNRS / Université de Nice -
Sophia Antipolis, 2004, pp. 160.

[2] ISO/IEC – Information technology, Processing Languages,
Document Style Semantics and Specification Languages
(DSSSL) – 10179:1996(E), ISO, 1996.

[3] Kelsey, R. and Clinger, W. and Rees, J. – The Revised(5)
Report on the Algorithmic Language Scheme –
Higher-Order and Symbolic Computation, 11(1), Sep, 1998.

[4] Matthews, J. – Component Deployment with PLanet – You
Want it Where? – Proceedings of the Seventh Workshop on
Scheme and Function Programming, (University of Chicago
Technical Report TR-2006-06), Oregon, USA, Sep, 2006.

[5] Raymond, E. – The Cathedral and the Bazaar – 2000.

[6] Serrano, M. – Bee: an Integrated Development
Environment for the Scheme Programming Language –
Journal of Functional Programming, 10(2), May, 2000, pp.
1–43.

76

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

