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Abstract

This paper presents Biglook, a widget library for an extended version of the Scheme
programming language. It uses classes of a Clos-like object layer to represent widgets
and Scheme closures to handle graphical events. Combining functional and object-oriented
programming styles yields an original application programming interface that advocates
a strict separation between the implementation of the graphical interfaces and the user-
associated commands, enabling compact source code.

The Biglook implementation separates the Scheme programming interface and the na-
tive back-end. This permits different ports for Biglook. The current version uses GTK+

and Swing graphical toolkits, while the previous release used Tk.

Introduction

Functional languages (henceforth FLs) must provide facilities for constructing con-

temporary applications. For instance, FLs must provide facilities implementing

database access, network roaming or graphical user interfaces (henceforth Gui)

(Gabriel, 1991; Wadler, 1998). We have studied the problem of constructing Gui

in functional languages by designing a widget library for the Scheme programming

language, called Biglook, which is presented in this paper. Biglook’s primary use is

to implement graphical applications (applications such as xload, editors à la Emacs,

browser à la Netscape or even programming tools such as kbrowse, our graphical

Scheme code browser). Figure 1 presents two screen shots of Biglook applications:

i) kbrowse on the left and ii) the Biglook dock applications, à la NextStep, on the

right. These Biglook applications are used on a daily basis.

By contrast to previous work, no attempt has been made to make that library

familiar to programmers used to imperative or purely object oriented programming

style. On the contrary, our library introduces an original application programming

interface (Api) that benefits from the high level constructions of the extended

Scheme implementation named Bigloo (Serrano, 1994). The main Bigloo compo-

nent is an optimizing compiler that delivers small and efficient applications for

the Unixtm operating system. Bigloo is able to produce native code (via C) and

JVM bytecode. Currently Biglook uses GTK+ (Pennington, 1999) associated with

the Bigloo C back-end and Swing (Walrath & Campione, 1999) with the Bigloo
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Fig. 1. Two Biglook applications: a code browser on the left, “dock” applications on the
right

JVM back-end. The previous release of Biglook (Gallesio & Serrano, 2001) used

Tk (Ousterhout, 1994).

Bigloo implements an object layer inspired by Clos (Bobrow et al., 1988). It

is a class-based model where methods override generic functions and are not de-

clared inside classes as in Smalltalk (Goldberg & Robson, 1983), O’Caml (Rémy &

Vouillon, 1997) or Java (Gosling et al., 1996b).

Biglook is implemented as a wrapping layer on top of native widget libraries (that

we name henceforth the back-end). This software architecture saves the effort of im-

plementing low-level constructions (such as pixel switching, clipping, event handling

and so on) allowing to focus on the Scheme implementation of new features.

When designing the Biglook Api we always had to decide which model to choose:

the functional model or the object model. We think that these two models are not

contradictory but complementary. For instance, if the widget hierarchy naturally

fits a class hierarchy, user call-backs are naturally implemented by the means of

Scheme closures.

In Section 1 we briefly present the Bigloo system emphasizing its module system

and its object layer. This section is required for readers unfamiliar with the Clos

model and it also serves as an introduction to virtual slots. Virtual slots are a new

Bigloo construction that is required in order to separate the Biglook Api made of

classes and the native back-end. They are presented in Section 2. In Section 3 we

present the Biglook library. We start by looking at a simple Biglook application

and its associated source code. Then, we detail the Biglook programming princi-
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ples (widgets creation, event handling, etc.) motivating our design orientations by

programming language considerations. In this section we compare the functional

programming style and the object oriented one. In Section 4 we present the Biglook

implementation. Finally, in Section 5 we present a comparison with related work.

1 Bigloo

Bigloo is an open implementation of the Scheme programming language. From the

beginning, the aim was to propose a realistic and pragmatic alternative to the strict

Scheme implementation defined by (Kelsey et al., 1998). Bigloo does not implement

“all” of Scheme; for example, the execution of tail-recursion may allocate memory.

On the other hand, Bigloo implements numerous extensions: support for lexical and

syntactic analysis, pattern matching, an exception mechanism, a foreign interface,

an object layer and a module language. In this Section, we present Bigloo’s modules

and its object model; that is, class declarations and generic functions. Virtual slots,

which are heavily used in Biglook, are presented in Section 2.

1.1 Modules

Bigloo modules have two basic functions: one is to allow separate compilation and

the second is to increase the number of errors that can be detected by the compiler.

Bigloo modules are simple and they have been designed with the concern of an easy

implementation.

A module is a compilation unit for Bigloo. It is represented by one or more files

and has the following syntax:

(modulemodule module-name
(importimport import+)∗

(exportexport export+)∗

(staticstatic static+)∗

(librarylibrary static+)∗

)

optional-body

Import clauses are used to import bindings in the module. In order to import, one

just needs to state the identifier to be imported and its source module. Note that

a shorthand exists to import all the bindings of a module.

Export and static clauses play a close role. They point out to the compiler that the

module implements some bindings and distinguish those that can be used within

other modules (they are exported) and those that cannot (they are static). These

clauses do not contain identifiers but prototypes. It is then possible to export vari-

ables (mutable bindings) or functions (read-only bindings). Static clauses are op-

tional (the bindings of a module which are not referenced in a clause are, by default,

static).

Library clauses enable programs to use Bigloo libraries. A Bigloo library is a

merely a collection of pre-compiled modules. Using a library is equivalent to import-
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ing all the modules composing the library. Detailed information on Bigloo modules

may be found in (Serrano, 1994; Serrano, 1999).

1.2 Object layer

In this paper we assume a Clos-like object model with single inheritance and

single dispatch. The object layer implemented in Bigloo is a restricted version of

Clos (Bobrow et al., 1988) inspired, to a great extent, by Meroon (Queinnec,

1993).

1.2.1 Class declarations

Classes can be declared static or exported. It is then possible to make a declaration

accessible from another module or to limit its scope to one module. The abbreviated

syntax of a class declaration is:

(classclass class-id::super-class-id optional-init optional-slots)

A class can inherit from a single super class. Classes with no specified super class

inherit from the object class. The type associated with a subclass is a subtype of

the type of the super class.

A class may be provided with an initialization function (optional-init) that is

automatically called each time an instance of class-id is created. Initialization func-

tions accept one argument, the created instance.

A slot may be typed (with the annotation ::type-id ), may be immutable (if

declared read-only), and may have a default value (default option). Here are

some possible declarations for the traditional point and point-3d:

(modulemodule module-points

(exportexport (classclass point

(point-init)

(x::double (default 0.0))

(y::double (default 0.0)))

(classclass point-3d::point

(z::double (default 0.0)))))

(definedefine point-init

(letlet ((count 0))

(lambdalambda (obj::point )

(set!set! count (+ 1 count))

(print "# of points: " count))))

1.2.2 Instances

When declaring a class cla, Bigloo automatically generates the predicate cla?, an

allocator instantiate::cla , an instance cloner duplicate::cla , accessors (e.g.,

cla-x for a slot x), modifiers (e.g., cla-x-set! for a slot x) and an abbreviated
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special access form, with-access::cla , to allow accessing and writing slots simply

by using their name. Here is how to allocate and access an instance of point-3d :

(letlet ((p (instantiateinstantiate::point-3d (y -3.4) (x 1.0))))

;; The initialization value of a slot can be omitted from the arguments list if it has
;; a default value; this is the case for the slot z of class point-3d.
(with-accesswith-access::point-3d p (x y z)

(sqrt (+ (sqr x) (sqr y) (sqr z)))))

The instantiate and with-access special forms are implemented by the means

of macros that statically resolve the keyword parameters (such as x, y and z). For

instance, the above example is expanded into:

(letlet ((p (make-point-3d 1.0 -3.4 0.0)))

(sqrt (+ (sqr (point-3d-x p))

(sqr (point-3d-y p))

(sqr (point-3d-z p)))))

As we can see, since macros are expanded at compile-time, there is no run-time

penalty associated with keyword parameters.

1.2.3 Generic functions and methods

Generic function declarations are function declarations annotated by the generic

keyword. They can be exported, which means that they can be used from other

modules and that methods can be added to those functions from other modules.

They can also be static, that is, not accessible from within other modules, hich

means that no other modules can add methods. The Clos model fits harmoniously

with the traditional functional programming style because a function can be thought

as a generic function overridden with exactly one method.

The syntax to define a generic function is similar to an ordinary function defini-

tion:

(define-genericdefine-generic (fun::type arg::class ...) optional-body)

Generic functions must have at least one argument as this will be used to solve the

dynamic dispatch of methods. This argument is of a type T and it is impossible to

override generic functions with methods whose first argument is not of a subtype

of T .

Methods are declared by the following syntactic form:

(define-methoddefine-method (fun::type arg::class ...) body)

Methods override generic function definitions. When a generic function is called,

the most specific applicable method, that is the method defined for the closest

dynamic type of the instance, is dynamically selected. A method may explicitly

invoke the next most specific method overriding the generic function definition for

one of its super classes (a class has only one direct super class but several indirect
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super classes) by the means of the (call-next-method) form. It calls the method

that should have been used if the current method had not been defined.

Here is an example of a generic function that illustrates the use of the Bigloo

object layer. We are presenting a function that prints the value of the slots of the

point and point-3d instances. This generic function is named show:

(define-genericdefine-generic (show o::point ))

Then, the generic function is overridden with a method for classes point and

point-3d.

(define-methoddefine-method (show o::point )

(with-accesswith-access::point o (x y)

(print "x=" x)

(print "y=" y)))

(define-methoddefine-method (show o::point-3d )

(with-accesswith-access::point-3d o (z)

(call-next-method)

(print "z=" z)))

Hereafter is an example of a call to the show generic function.

(letlet ((p (instantiateinstantiate::point-3d (x 10) (y 20) (z 465))))

(show p)) ` x=10 y=20 z=465

Generic functions is a well known programming paradigm introduced by the Com-

mon Lisp object system. Generic functions provide a greater flexibility and extensi-

bility than method-in-class systems, enabling users to customize libraries in many

directions. Incarnations of generic functions exist in several programming language

(Dylan (Shalit, 1996), Cecil multi-methods (Chambers, 1993), O’Haskell classes and

instances (Nordlander, 1999), ...).

2 Virtual slots

Bigloo supports two kind of instance slots: regular slots, that have been described in

Section 1.2.1, and virtual slots that enable several views of a single data. As we will

see in Section 4.2, virtual slots are at the heart of the Biglook implementation. They

are mandatory to present Biglook to the user as a class based Api. In particular,

wrapping native widgets (such as GTK+ or Swing) for the Bigloo object model

requires virtual slots.

Using virtual slots gives the illusion of accessing the slots of a class instance but

instead, Scheme functions are called. As we have seen in Section 1.2.2, the compiler

automatically defines getters and setters that access the various values embedded

in the instances regular slots. Accessing virtual slots is syntactically identical to

accessing plain slots, but virtual slots differ in the following way:

• their getters and setters are not generated by the compiler. They are defined

by the user, in the class definition, using the class slot options: get and set.
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• they are not allocated into memory.

For instance, let us consider a possible rectangle class implementation. An in-

stance of rectangle is characterized by its origin (x0, y0) and either its upper right

point (x1, y1) or its dimension (width, height). In the following class definition,

the width and height slots are virtual.

(classclass rectangle

x0 y0 x1 y1

(width (get (lambdalambda (o)

(with-accesswith-access::rectangle o (x0 x1)

(- x1 x0))))

(set (lambdalambda (o v)

(with-accesswith-access::rectangle o (x0 x1)

(set!set! x1 (+ x0 v))))))

(height (get (lambdalambda (o)

(with-accesswith-access::rectangle o (y0 y1)

(- y1 y0))))

(set (lambdalambda (o v)

(with-accesswith-access::rectangle o (y0 y1)

(set!set! y1 (+ y0 v)))))))

Setting the width virtual slot (resp. the height slot) automatically adjusts the x1

value (resp. the y1 value) and vice versa. No memory is allocated for width and

height, as their values are computed each time they are accessed.

The major strength of virtual slots is that arbitrary computations can take when

accessing or setting such a slot. For instance, one may imagine that accessing a

virtual slot actually fetches and stores a data from a database or access a remote

data trough the network.

2.1 Virtual Slots Implementation

In a language provided with a Meta Object Protocol (henceforth Mop) (Kiczales

et al., 1992; Gallesio, 1996), virtual slots implementation is straightforward. Meta

object programming makes compilation harder and therefore Bigloo does not in-

clude it.

Declaring a standard class defines the memory layout of its instances. Each class

slot is allocated a memory area. For instance, if we consider a rectangle class without

width and height virtual slots, the memory layout of the instances could be:

class name:

super class:

objectclass name:

super class:

Class:

5.3

10.0

rectangle

x0:

y0:

x1:

y1:

2.2

4

class name:

super class:

Class:

5.3

10.0

rectangle

x0:

y0:

x1:

y1:

2.2

4

class name:

super class:

Class:

Each class declaring virtual slots contains a vector of virtual slots accessors. So,

the memory layout for instances of the rectangle, provided with the width and

height virtual slots is:
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class name:

super class:

objectclass name:

super class:

Class:

5.3

10.0

rectangle

x0:

y0:

x1:

y1:

2.2

4

vslots: #(rectangle−width

rectangle−width−set!

rectangle−height

rectangle−height−set!)

class name:

super class:

Class:

5.3

10.0

rectangle

x0:

y0:

x1:

y1:

2.2

4

vslots: #(rectangle−width

rectangle−width−set!

rectangle−height

rectangle−height−set!)

class name:

super class:

Class:

Accessing virtual slots fetches from the class virtual vector the correct function

(the offset is computed statically) and calls it. Consequently, accessing a virtual

slot of an instance i is:

(letlet ((vvec (class-virtual-vector (object-class i))))

((vector-ref vvec <a-static-offset>) i))

Obviously, accessing virtual slots is more expensive than accessing regular ones:

the overhead is one additional memory access and one additional function call.

However, the extra memory read can be removed if each instance is provided with

an extra slot pointing to the virtual vector of its class. Bigloo does not use this

framework to maintain class instances as small as possible.

3 The Biglook library

Biglook is an Object Oriented Scheme library for constructing Guis. It offers an

extensive set of widgets such as labels, buttons, text editors, gauges, canvases.

Most of the functionality it offers are available through classes rather than through

ad-hoc functions. For instance, instead of having the classical functions iconify,

deiconify and window-iconified? for the window widget, Biglook offers the vir-

tual slot visible to implement this functionality. Setting the visible slot enables

iconification/deiconification. Reading the visible slot unveils the window iconifi-

cation state. Thus, it is our opinion that this design choice yields a simpler Api and

allows usage of introspective techniques for Guis programming.

In Section 3.1, we first present a small interface and discuss how to create the wid-

gets which compose it in Section 3.2. Section 3.4 describes the notion of container

widget and placement rules. In Section 3.5 we show how to make a widget reactive

to an external event such as a mouse click. Finally, in Section 3.7 we show how

a user can extend the library and create a complex widget by composing simpler

ones.

Throughout this section we justify the choices we have made when designing the

Biglook Api. Our reflection on how to create a widget or how to handle interfaces

events are presented in Sections 3.3 and 3.6. In Section 3.8, we discuss more gen-

erally the problem of widget composition and the role of generic functions in this

area as well as in library extension.

3.1 A Biglook example

Biglook uses a declarative model for the construction of Guis. This permits a clear
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separation between the code of the interface and the

code of the application. The construction of an inter-

face starts by declaring the various widgets which com-

pose it. Then, the behavior of each widget is specified

independently of its creation by associating an action

(a Scheme closure) with a widget specific event (key

pressed, mouse click, mouse motion, . . . ).
Fig. 2: A simple example

Figure 2 is a screen shot of a simple Biglook application. It is made of a window

(here named “A Biglook example”), a check button (the toggle button underline), a

radio button group (bold, italic, plain), and a plain button (Quit). The source code

of this example is given Figure 3.

1: (modulemodule example (librarylibrary biglook))

2:
3: (definedefine awin (instantiateinstantiate::window

4: (title "A Biglook example")))

5: (definedefine acheck (instantiateinstantiate::check-button

6: (parent awin)

7: (text "underline")))

8: (definedefine aradio (instantiateinstantiate::radio

9: (parent awin)

10: (orientation ’horizontal)

11: (border-width 2)

12: (texts ’("bold" "italic" "plain"))))

13: (definedefine abutton (instantiateinstantiate::button

14: (parent awin)

15: (relief ’flat)

16: (text "Quit")))

Fig. 3. A Simple example, the source code

From that code, we see that to access Biglook classes and functions, the program

uses a library module clause line 1. This program creates a window (line 3), and

three widgets (line 5, line 8 & 13).

In the sections 3.2 and 3.4 we present how to create widgets and how to place

them in a window. The Figure 2 interface is inert, that is, no action is associated

with the widgets yet. We will see in Section 3.5 how actions can be associated with

widgets.

3.2 Widget Creation

The graphical objects (i.e., widgets) defined by the Biglook library such as menus,

labels or buttons are represented by Bigloo classes. Each class defines a set of slots

that implement the configuration of the instances. Consequently, tuning the look of

a widget consists in assigning correct values to its slots. The library offers standard

default values for each widget but these values can of course be changed. Generally
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the customization is done at widget creation time. For instance, the radio group of

Figure 3 will be displayed horizontally and with a border size of 2 pixels (lines 10

and 11). A particular aspect of a widget can be changed by setting a new value to

its corresponding slot. For instance, the expression

(radio-orientation-set! aradio ’vertical)

changes the orientation of the radio group forcing a re-display of the whole window.

Of course, the value of this slot can be retrieved by just reading it:

(print (radio-orientation aradio))

Remember that, as seen in Section 1.2.2, instead of using the functions created by

Bigloo that fetch and write the value of a slot, one may write an equivalent program

using the Bigloo special form with-access:

(with-accesswith-access::radio aradio (orientation)

(set!set! orientation ’vertical)

(print orientation))

In the rest of this paper, we will use either forms for accessing class slots.

3.3 Reflection on widget creation

Biglook widget creation supports variable number of arguments and keyword pa-

rameters (parameters that can be passed in any order because their actual value

is associated with a name). We have found these features very useful in order to

enable declarative programming for Gui applications. For instance, a plain Biglook

button is characterized by 20 slots. Some of them describe the graphical representa-

tion (colors, border sizes, . . . ), some others describe the internal state of the button

(widget parent, associated value, associated text, . . . ). In general, these numerous

slots have default values. When an instance is created, only slots that have no de-

fault values must be provided. Slots are initialized with their default value unless a

user value is specified. As a consequence, the form that operates widget construc-

tion (e.g., class instantiation) must accept a variable number of arguments. Only

some slot values must be provided, others are optional. In addition, because widget

constructors accept a large number of parameters, it is convenient to name them

and to be able to pass them in any order. This is made possible in Biglook by the

instantiate:: form. As this form is implemented using macros that are expanded

into calls to the class constructors where each declared slot is provided with a value,

there is no run-time overhead associated with forms such as instantiate::.

Lacking variable number of arguments or keywords disables declarative program-

ming style for Guis because widgets have to be created and, in a second step, spe-

cific attributes have to be provided. Even overloading and class constructors do not

help. Let’s suppose our window classes implemented in Java Awt (Gosling et al.,

1996a) or Swing (Walrath & Campione, 1999). To enable a full declarative style,

we should provide the button class definition with 220 constructors (a constructor

for each possible combination of provided slots). Even for much smaller classes,
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this is impractical because, in general, overloading dispatches on types only and

several slots can have the same type. For instance, imagine that we want to change

the graphical appearance of our window. Instead of using the smallest area large

enough to display the three widgets, we want to force the width of the window to

a specific value. We can turn the definition of Figure 3, line 3 to:

(definedefine awin (instantiateinstantiate::window

(title "A Biglook example")

(width 300)))

If we want to specify both width and height, we can use:

(definedefine awin (instantiateinstantiate::window

(title "A Biglook example")

(width 300)

(height 200)))

Languages relying on type overloading cannot propose these different constructors

because the width and the height of a window are of the same type.

Languages without overloading nor n-ary functions traditionally use list to collect

optional and keyworded arguments. In addition to the runtime cost imposed by the

list constructions, the called function has to dispatch, at runtime, over the list to set

the parameters values. Furthermore, such a call cannot be statically typed anymore.

3.4 Containers and widget placement

Biglook uses special sort of widgets to enable user customized widget placements:

the container class. A container is a widget that can embed other widgets. Those

widgets are called the children of the container. For instance, a window such as

Figure 3, line 3 is a container, it “contains” the three other widgets. Exception

made of windows, all widgets must be associated with a container in order to be

visible on the screen. To associate a widget with a container, one have to set its

parent slot (see lines 6, 9 & 14 of Figure 3). Biglook proposes several kind of

containers: aligned containers (such as boxes and windows), grid containers, note

pad containers, paned containers, containers with scrollbars, etc.

Let us present here two examples of containers. First, let us consider that we want

to modify the interface of Figure 2. We

want the buttons to be displayed horizon-

tally instead of vertically (see Figure 4).

For that, we add a new container in the Fig. 4: An horizontal layout

window, an horizontal box:



12 Erick Gallesio, Manuel Serrano

Fig. 5. Several containers

1: (definedefine awin (instantiateinstantiate::window

2: (title "A Biglook example")))

3: (definedefine abox (instantiateinstantiate::box

4: (parent awin)

5: (orientation ’horizontal)))

6: (definedefine acheck (instantiateinstantiate::check-button

7: (parent abox)

8: (text "underline")))

9: ...

For the second example, we combine containers to design complex interfaces. For

instance, the interface of Figure 5 can be implemented as:

1: (definedefine awin (instantiateinstantiate::window

2: (title "A Biglook example")))

3: (definedefine atab (instantiateinstantiate::notepad

4: (parent awin)))

5: (definedefine apane (instantiateinstantiate::paned

6: (orientation ’horizontal)

7: (parent atab)))

8: (definedefine ascroll (instantiateinstantiate::scroll

9: (parent apane)))

10: (definedefine acheck (instantiateinstantiate::check-button

11: (parent ascroll)

12: (text "underline")))

13: (definedefine aradio (instantiateinstantiate::radio

14: (parent apane)

15: (border-width 2)

16: (orientation ’horizontal)

17: (texts ’("bold" "italic" "plain"))))

18: (definedefine abutton (instantiateinstantiate::button

19: (parent awin)

20: (relief ’flat)

21: (text "Quit")))

Note that even if the interfaces of Figures 2 and 5 seem quite different, we only

need to modify the parent slot of the acheck and aradio widgets to embed them

in the new containers atab (line 3), apane (line 5) and ascroll (line 8).
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3.5 Event Management

Biglook widgets allow the creation of complex Guis with minimal efforts. In gen-

eral, when building such interfaces, one of the main difficulties lies in trying to

separate the code of the interface from the rest of the program. Making the Gui

code independent from the rest of the application is important because:

• Guis are often built on a trial-fail basis. It is hard to conceive an interface

ex-nihilo, and it is generally after using it for a while that the elements of

the Gui find their place. Keeping the code independent from the rest of the

application allows the development of prototypes of the interface without

nasty consequences on the other parts of the program.

• A given program can have several interfaces according to the device on which

it is run (e.g. graphical screen, PDA, alphanumeric terminal). With an in-

dependent interface code, different interfaces can be connected to the same

program.

• The Gui of an application can be constructed interactively by an interface

builder. In such a case, it is preferable to keep the mechanically generated

code separate from hand written parts of the application.

Graphical events (mouse click, key pressed, window destruction . . . ) can be asso-

ciated with widgets by the means of the widgets event slot. This slot must contain

an instance of the class event-handler which is defined as:

(classclass event-handler

(configure::procedure (default dummy-callback))

;; window events
(destroy::procedure (default dummy-callback))

...

;; mouse events
(press::procedure (default dummy-callback))

(enter::procedure (default dummy-callback))

...

;; keyboard events
(key::procedure (default dummy-callback))

...)

Each slot of an event-handler is a procedure called a call-back that accepts one

argument. When a graphical action occurs on a widget, the associated call-back

is invoked passing it an event descriptor. Those descriptors are allocated by the

Biglook runtime system. They are instances of the event class which is defined as:
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(classclass event

;; the widget which receives the event
(widget::widget read-only)

;; the button number or -1
(button::int read-only)

;; the modifiers list (e.g. shift)
(modifiers::pair-nil read-only)

;; the x position of the mouse
(x::int read-only)

;; the y position of the mouse
(y::int read-only)

;; the character pressed or -1
(char::char read-only)

...)

So, modifying the example of Figure 3 for the Quit button to be aware of mouse

button 1 clicks, we could write the code as shown in Figure 6.

1: (letlet ((evt (instantiateinstantiate::event-handler

2: (press (lambdalambda (e)

3: (ifif (= (event-button e) 1) (exit)))))))

4: (with-accesswith-access::button abutton (event)

5: (set!set! event evt)))

Fig. 6. An event handler

That is, on line 1 we allocate evt, an instance of the event-handler class. That

event handler is connected to the button line 5. The event handler only reacts to

mouse press events. When such an event is raised, the call-back line 2 is invoked,

its formal parameter e being bound to an instance of the event class. This function

checks the button number of the raised event (line 3). When the first button is

pressed the Biglook application exits.

Since it is frequent that Gui widgets react to mouse button 1 clicks, Biglook

widgets propose a shorthand to associate a call-back with that particular event:

widgets are provided with a command slot. Setting that slot is equivalent to the

code sequence shown in Figure 6. On the other hand, Biglook event handlers are

handy when: i) several widgets have to be connected to the same call-backs (such

as a minesweeper game where all the buttons share the very same behaviors) or

ii) several call-backs have to be connected to a widget. For instance, suppose that

we want our Quit button to adopt a different appearance when the mouse cursor is

flying over that button, we simply write:

(with-accesswith-access::button abutton (event relief)

(with-accesswith-access::event-handler event (enter leave)

(letlet ((oldr relief))

(set!set! enter (lambdalambda (e) (set!set! relief ’shadow-in)))

(set!set! leave (lambdalambda (e) (set!set! relief oldr))))))

It is possible to modify already connected call-backs. For instance, if we want the

Quit button to emit a sound when it is entered and leaved, we can write:
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(with-accesswith-access::button abutton (event)

(with-accesswith-access::event-handler event (enter leave)

(letlet ((olde enter)

(oldl leave))

(set!set! enter (lambdalambda (e) (beep) (olde e)))

(set!set! leave (lambdalambda (e) (oldl e) (beep))))))

Since widgets call-backs are plain Scheme closures, they can be manipulated as first

class objects, as in this example where new call-backs capture the values of the old

ones in order to reuse them.

3.6 Reflection on event handling

Most modern widget toolkits (exception made of Qt (Dalheimer, 1999)) use a call-

back framework. That is, user commands are associated with specific events (such

as mouse click, mouse motion, keyboard inputs, . . . ). When an event is raised, the

user command is invoked. We think that the closure mechanism is the most simple

and efficient way to implement call-backs even if some alternatives exist.

The rest of this section discusses how call-backs can be implemented depending

on the features provided by the host language used to implement a graphical toolkit.

3.6.1 Languages that support functions without environment

ISO-C (ISO/IEC, 1990) supports global functions but no local functions. A C func-

tion is always top-level and may only access its parameters and the set of global

variables. C functions have no definition environment. However, without an envi-

ronment, a call-back is extremely restricted. In particular, a call-back is likely to

access the widget that owns it. In GTK+ (a C toolkit) when a call-back is associ-

ated with an event, an optional value may be specified that will be passed to the

call-back when the event is raised. This user value actually is the environment of

the call-back. GTK+ mimics closures with its explicit parameter-passing scheme.

We may notice that the allocation and the management of the closure environment

is in charge of the client application.

3.6.2 Languages with classes

For languages with classes such as Java, another strategy can be used. Call-backs

may be implemented using class member functions. Member functions may access

the object and the object’s attributes for which they are invoked. Member func-

tions look like closures. However, member functions are not closures because they

are associated with classes. In other words, all the instances of a class share the

implementation of all their member functions. That is, different call-back implemen-

tations require different class declarations. For instance, if one wants to implement a

button with a call-back printing a plain message and another one emitting a sound,

two classes have to be defined. These class declarations turn out to be an hindrance

to simplicity and readability. In addition, if several events must be handled by one

widget, this technique turns out to be impractical because it is not possible to define
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a new class for each kind of events the widget must react to (mouse-1, mouse-2,

mouse-3, shift-mouse-1, ctrl-mouse-1, shift-ctrl-mouse-1, . . . ).

To avoid these extra class definitions, Java has introduced inner classes. An in-

ner class is a class defined inside another class; it may be anonymous. Because in

Gui programming inner classes are used to implement call-backs and as they are

numerous, Java proposes a new syntax that enables within a single expression, to

declare and to instantiate an inner classe. For instance:

button.addActionListener(new ActionListener () {

public void actionPerformed(ActionEvent e) {

a user code that may reference current lexical bindings
}

})

The expression new ActionListener... deserves some explanation: 1) it de-

clares an anonymous inner class that 2) implements the interface ActionListener

and 3) it creates one unique instance of that new class that is sent to the method

addActionListener of the Button instance. That is, anonymous inner classes are

the exact Java implementation of closures. It is worth pointing out that Scheme

syntax for closures is far more compact than the Java one.

3.6.3 Closures

Closures are central to Gui programming because they are one of the most natural

way to implement call-backs. As we have seen, all call-back based toolkits offer

a mechanism similar to closures. It can be member functions or anonymous Java

classes or extra parameter passed to C functions. However, we have found that so-

lutions of non-functional programming languages are not as convenient as Scheme’s

lambda expression because either the user is responsible of the construction of the

object representing the closure or extra syntax is introduced.

Not only call-backs are easily implemented by the means of closures but we

have also found that closures are handy to implement pre-existing data struc-

ture visualization. Consider the screen shot, Figure 8. It is made of two Biglook

1: (definedefine tree1 (instantiateinstantiate::tree

2: (parent apane)

3: (root object)

4: (node-label class-name)

5: (node-children class-subclasses)))

6: (definedefine tree2 (instantiateinstantiate::tree

7: (parent apane)

8: (root "/")

9: (node-label (lambdalambda (x) x))

10: (node-children directory->list)))

Fig. 7. Two Biglook trees



Programming Graphical User Interfaces with Scheme 17

trees. A Biglook tree is a visual-

ization of an existing data struc-

ture. That is, a Biglook tree does

not contain data by itself. It only

visualizes an existing structure. A

Biglook tree is defined by three

slots: i) the root of the tree (root),

ii) a function that extracts a string

which stands for the label of a node

(node-label), iii) a function that

computes the children list of a node

(node-children). The declaration

of the trees of Figure 8 are given Fig. 8: Two Biglook trees

Figure 7, lines 1 and 6. The first tree (tree1) is a class tree, its root is the Scheme

object class denoting the root of the inheritance tree (line 3). The second tree

(tree2) is a file tree. Its root is "/", the root of the file system (line 8). To compute

the name of a node representing a class it is only required to extract the name of

that class (line 4). The name of a node representing a directory is the node itself

since the node is a string (line 9). The children list of a class is computed using the

Bigloo library function class-subclasses (line 5). The children list of a directory

is computed by the library function directory->list (line 10). As one may notice

“hooking” a tree to a data structure is a simple task. The resulting program is

compact. We think that this compactness is another strength of Scheme closures.

3.7 Widgets composition

Biglook clients can define their own sets of widgets. New widgets can be made by

composing and graphically tuning simpler ones. A composite widget is completely

written in Scheme and is generally built by inheriting from an existing widget. One

of the simplest composite widget is a labeled entry. Such a widget is a small line

editor with a label on its left indicating the kind of value that must be entered in

the editor.

These widgets can be easily implemented with two basic builtin widgets: a label

and an entry. The labeled-entry class is defined in the Biglook library, and we

show here how to implement a simplified version.

The main difficulty is to determine the inheritance scheme to be used. Often,

composite widgets are standard widgets augmented with additional graphical ma-

terial (for instance a text with a scrollbar widget inherits its behavior from text

and not from scrollbar). For the labeled-entry we consider it as a specialized

version of an entry with a label as decoration. This observation yields to the

structure of the labeled-entry class: it inherits from the entry class and provides

a slot containing a reference to a label. The last design issue is to select which slots
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are defined for labeled-entry instances. They can be characterized according to

three categories:

• The ones that change the properties of the inherited class. This is a classical

object problem that can be solved by a slot redefinition. In the case of a labeled

entry, for instance, we could wish to redefine the relief property (which is

a graphical attribute of widgets) to its container rather than the one of the

entry, as implied by our inheritance scheme.

• The ones that give access to a property of a component of the composite which

is not the main one (i.e. a decoration element). This can be easily achieved

with a virtual slot that accesses a property of a real slot of the widget. For

instance, the slot title of a labeled-entry can be implemented by a virtual

slot giving access to the slot text of the embedded label.

• The ones that propagate a property to some components of the new class.

This is frequent in composite widgets, since we generally want that the dec-

oration elements of the composite be affected in the same way as the main

elements. For instance, changing the background color of a labeled-entry

implies changing the color of the entry as well as its container and associated

label. Slot propagation is generally implemented by the means of a virtual

slot.

A possible implementation for the labeled-entry class could thus look as follows:

(classclass labeled-entry::entry

(box (defaultdefault #unspecified))

(label (defaultdefault #unspecified))

;; the container relief
(relief

(get (lambdalambda (o)

(box-relief (labeled-entry-box o))))

(set (lambdalambda (o v)

(label-relief-set! (labeled-entry-label o) ’none)

(box-relief-set! (labeled-entry-box o) v))))

;; the text of the label
(title

(get (lambdalambda (o) (label-text (labeled-entry-label o))))

(set (lambdalambda (o v) (label-text-set! (labeled-entry-label o) v)))))

However, defining a new class is not sufficient to define a new widget. In effect,

the protocol used by the Biglook library tells us that a widget must be first

realized before being properly initialized. Widget realization is ensured by the

realize-widget generic function. This function is generally overloaded by a new

method for each widget class since widget realization depends on the type of the

widget that must be created. This is the place where graphical tuning for the com-

posite widget can be implemented.

For the labeled-entry class, in order to properly initialize its instances, we

override realize-widget with the following method.
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(define-methoddefine-method (realize-widget o::labeled-entry )

(with-accesswith-access::labeled-entry (parent label box)

(set!set! box (instantiateinstantiate::box

(parent parent)

(orientation ’horizontal)))

;; allocate the label
(set!set! label (instantiateinstantiate::label (parent box)))

;; invoke the entry realization
(call-next-method)

;; re-parent the entry
(set!set! parent box)))

This method first allocates a container and a decoration label before calling

call-next-method in order to ensure a proper realization of the entry. Note

that label reuses the container of the entry to be effectively embedded in the

labeled-entry.

3.8 Reflection on widgets composition and generic functions

A generic function is a bundle of methods. Object behaviors are associated with

generic functions instead of being associated with class definitions. Behavior speci-

fication is thus orthogonal to classes definition. Generic functions enable behaviors

to be associated with instances after they have been created. When methods are de-

fined inside classes definition, the behaviors of the instances are specified once and

for all. Generic functions enable new behaviors to be specified anytime, anyplace.

Generic functions permit user customizations that are hardly possible if methods

are defined within classes. Of course, this customization may yield to situations

where adding an erroneous method breaks existing codes because adding a method

may change the treatment applied to already existing data structures. However we

are convinced that this inconvenient is minor compared with the advantages of the

extensibility capacity discussed in the next sections.

3.8.1 Extending public widgets

In this section we present how user applications may specify new behaviors for

standard widgets. We present four scenarios: 1) one based on generic functions 2)

another one using multiple inheritance and subtyping 3) another one using single

inheritance and multiple subtyping and 4) a last one using parametric types.

Biglook proposes several kinds of text widgets. Let us concentrate on two simple

ones: plain text (text) and text provided with scrollbars (scrolltext). Scrolltext

is a composite widget whose implementation is very close to the one of labeled-entry

presented Section 3.7. The scrollbar is the decoration of the scrolltext. Conse-

quently, text and scrolltext are related by subtyping and inheritance relation-

ships:
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Each text widget has a cursor whose location is defined by two numbers: the line

number and the column number. A user application may find to be more convenient

to represent the cursor position as Emacs does, that is, with one unique number

which is an integer representing the offset of the character from the start of the

buffer. Switching from an X × Y positioning to a linear positioning and vice versa

is algorithmically easy.

1. In order to implement linear positioning, provided with generic functions, a

user application could simply define:

(define-genericdefine-generic (point::long t::text )

(with-accesswith-access::text t (cursor-x cursor-y line-width)

;; this is an over simplified implementation because in
;; practice not all lines are of same width
(+ cursor-x (* line-width cursor-y))))

This definition is valid for text and all its subclasses. It is thus valid for

scrolltext. Because text and scrolltext share the same implementation

for point, a regular Scheme function could be used instead of a generic func-

tion. However, one may imagine situations requiring specific behavior and thus

different methods. Without generic functions three solutions can be deployed.

2. If the language supplies multiple inheritance such as C++ or O’Caml (Rémy

& Vouillon, 1997)?, a user code may subclass text into a text/point class

that will be provided with an extra point member function and will derive a

new scrolltext/point inheriting from text/point and scrolltext:

If class declarations can be used, this solution is more complex than generic

functions because two new classes have to be introduced for each new facil-

ity. If we want to add a second extension, we might have to introduce two

additional classes and so on. This conducts rather rapidly to impractical in-

heritance schemes as shown below:

? One should note that because O’Caml supports parametric polymorphism, the point
facility could be implemented using a plain function. This solution would avoid building
new classes but it is not as powerful as generic functions because a plain function cannot
be overridden.
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3. If the language does not provide multiple inheritance or offers only limited

multiple inheritance such as Java, then adding our point facility in user

applications is hardly possible. In Java, because text and scrolltext must

be plain classes (by contrast to interfaces), it is impossible to define a class

inheriting from both text/point and scrolltext. Thus a user application

must use the inheritance tree:

Text/point and scrolltext/point are no more in a subtyping relationship

which means that an instance of scrolltext/point cannot be used when an

instance of text/point is expected. Obviously, this is not as convenient and

powerful as the generic function based solution.

4. Parametric types such as C++ ’s templates (Stroustrup, 1994) or MzScheme

mixins (Flatt et al., 1998) are a means to delay the concrete realization

of classes. Parametric types help with program extensibility because actual

classes are created in two steps: i) definition of the parametric class ii) effec-

tive realization of the concrete class. During step ii one may specialize con-

crete classes and inheritance relationships. Because parametric types allow

to generate classes, in many situations they can be used in place of multiple

inheritance. However, extending the previous text example using parametric

types would lead to a solution close to the one based on multiple inheritance.

The restrictions of the multiple inheritance also applies to parametric types.

In addition, as stated in the paper (Findler & Flatt, 1998), parametric types

require careful design in order to enable extensibility. Failing to conform to

strict design rules compromises further extensibility.

3.8.2 Extending embedded widgets

When methods are defined in the class, adding a new service requires at least

the declaration of a new extending class. However, this framework does not apply

for already existing instances. This situation occurs frequently in object oriented li-
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braries. For instance, the Biglook library proposes the editor class which is defined

as:

(classclass editor::frame

title::string

window::frame

minibuffer::entry

...)

Because most of the time, editor frames are used to implement text editors, the

Biglook library offers the convenient make-editor function that instantiates an

editor frame and fills it with a text widget and a set of default values for the other

slots.

(definedefine (make-editor title::string )

(instantiateinstantiate::editor

(title title)

(window (instantiateinstantiate::text ))

...))

In this case, text instances used to fill the window slots are instantiated by the

make-editor constructor and users have no means to control over their creation

since it is done by a library function. With such a restricted design for make-editor,

the type of the window slot cannot be changed. The constructor make-editor lacks

a parametric type and uses no inheritance. It is impossible for the user to add

a facility such as emacs positioning to the embedded text windows, using the

previously described subclasses framework of Section 3.8.1.

Because generic function are unrelated to class definitions, they can be used to

extend already created instances. In our editor example, a generic function could

extend the facilities provided by the embedded editor window. More arguments in

favor of generic functions may be found in papers by C. Chambers (Chambers,

1998; Millstein & Chambers, 1999)).

4 Implementing Biglook

In this section, we present the overall Biglook architecture and implementation.

Then, we detail the role of virtual slots.

4.1 Library Architecture

The Biglook library is implemented on top of a native back-end toolkit (currently

a GTK+ back-end and a Swing back-end are available). It takes advantage of the

efficiency of the back-end low level operations.
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Because Biglook makes few assump-

tions about the underlying toolkit,

re-targeting its implementation to

another back-end is generally possi-

ble. To be a potential Biglook back-

end, a toolkit must provide: i) a way

to identify a particular component

of the interface. Of course all the

toolkits provide this, even if the rep-

resentation used can differ, such as

an integer, a string, a function, and

so on. ii) an event manager that

does not hide any events. All the
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Fig. 9: The Biglook software architecture

toolkits we have tried satisfy this criteria (Tk, GTK+ and Swing). Figure 9 shows

the underlying architecture of the Biglook toolkit. In this figure, black circles stand

for user objects, white squares stand for Biglook internal objects, and white circles

stand for proxies pointing to back-end objects.

Actual graphical toolkits generally support these prerequisites and, as such, can be

used as potential Biglook back-end. We will see in Section 4.2 that using virtual

slots allows the building of the rest of the library on this minimal basis.

4.2 Virtual Slots and Biglook

A simple widget is a widget that is directly mapped into a builtin widget. All

simple widgets are implemented according to the same framework: they inherit

from the widget class and they define user customization options. These options

are implemented using virtual slots. We present here a possible implementation of

the label class. For the sake of simplicity, we assume that this class extends the

widget class with only one additional slot: the text slot that specifies the label

text.

(classclass widget::object

(builtin-widget read-only)

...)

(classclass label::widget

(text

(get (lambdalambda (o::label )

(with-accesswith-access::label o (builtin-widget)

(<builtin-label-text> builtin-widget))))

(set (lambdalambda (o::label v::procedure )

(with-accesswith-access::label o (builtin-widget)

(<builtin-label-text-set!> builtin-widget v))))))

Implementing the text slot requires virtual slots. Its getter and setter functions

directly interact with the back-end toolkit. Virtual slots are used to establish the

connection between Biglook user point of view of widgets and their native imple-

mentation. Virtual slots are used to provide an object oriented class-based Api to
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Biglook, independent of the back-end. The memory layout for label instances is

presented in Figure 10.

class name:

super class:

class name:

super class:

class name:

super class:

class name:

super class:

Class:Class:Class:

builtin−widget

widget

...

vslots:

...)

...

Biglook

text

relief

border−width

label

#(label−text

label−relief

label−border−width

builtin−label

Back−end (GTK+/Swing/...)

Fig. 10. Label instances memory layout.

Now that the slots of a label widget are defined, we must define how such a widget

has to be initialized. As with composite widgets, the class initialization specific code

is given to the system via the generic function realize-widget. For each class of

the library a method overrides this generic function and must call the back-end to

create the graphical object associated with the class. For a label, the method we

need to write is:

(define-methoddefine-method (realize-widget o::label )

(with-accesswith-access::label o (builtin-widget parent)

(set!set! builtin-widget (<builtin-make-label> parent))))

This method creates a builtin label via the low level <builtin-make-label> func-

tion and stores the result in the builtin-widget slot. This slot creates the link

between the Biglook toolkit and the back-end, as already seen in Figure 10.

4.3 Reflection on virtual slots

It is tedious to implement a Gui because it needs a lot of graphical tuning that

requires successive endeavors. Helping Gui programming is the task of interface

builders. These tools rely themselves on Gui. They enable the available widgets

of the toolkits to be graphically configured and inserted in the user interfaces.

Interface builders must be aware of the whole available widgets and the whole

configuration options of these widgets. If the toolkit implementation language is

provided with introspection and if widget configurations are implemented by the

means of class slots, builders can rely on it to present configuration panel for widgets

(pre-defined widgets as well as widgets defined in user programs). In the case of

Biglook, all the widget configurations are implemented by the means of virtual slots.

So, introspecting the class of a widget enables its full tuning (Superina, 2000).
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5 Related work

Many functional languages are connected to widget libraries especially to the Tk

toolkit. Few of them use object-oriented programming except in the Scheme world,

we can cite mainly STk, SWL and MrEd.

5.1 Scheme widget libraries

STk (Gallesio, 1995) is a Scheme interpreter extended with the Tk graphical toolkit.

To some extent, STk is the ancestor of Biglook, since it was developed by one of

the authors of this paper. However, STk is tightly coupled to the Tk toolkit and

even if this toolkit is presented to the user through an object oriented Api as in

Biglook, no provision was made to be independent from this back-end.

SWL is a contribution to the Petite Chez Scheme system (Dybvig, 1998). It relies

on an interpreter and uses Tk as back-end. In SWL, native Tk widgets are mapped

to Chez Scheme classes and in this respect this toolkit is similar to the Biglook or

STk libraries. However, SWL implementation is very different from the one used by

those libraries since SWL widgets explicitly talk with a regular Tcl/Tk evaluator.

MrEd (Flatt et al., 1999), a part of the DrScheme project (Felleisen et al., 1998),

is a programming environment that contains an interpreter, a compiler and other

various programming tools such as browser, debugger, etc. The back-end toolkit

used by MrEd is wxWindow (Smart, 1992), a toolkit that is available under various

platforms (Unix, Windows, etc.). As STk, this toolkit is completely dependent of

its back-end.

Interested readers can find performance evaluation of these implementations

in (Gallesio & Serrano, 2001).

5.2 Other functional languages widget libraries

Other functional languages provide graphical primitives using regular functions.

The main contribution for strict functional programming languages has been de-

veloped for the Caml programming language (Weis & al., 1991).

The first attempt, CamlTk, is quickly surveyed in (Rouaix, 1996). The design of

CamlTk is different from the one of Biglook. CamlTk binds Tk functions in Caml

while Biglook provides an original Api made of classes.

Recently a new widget library based on GTK+ has been proposed for Caml.

No article describes that connection. However, some work has been described to

add keyword parameters to Caml in order to help the connection with widget

libraries (Furuse & Garrigue, 1995). The philosophy of that work differs from ours

because that new library makes the GTK+ Api available from Caml. No attempts

are made to present a neutral Api as we did for Biglook.

Programming graphical user interfaces with lazy languages is far more challenging

than with strict functional languages. The problem is to tame the imperative aspects

of graphical I/O in such languages (Noble & Runciman, 1994; Vullings et al., 1995).

Several solutions have been proposed: Fudget by Carlsson and Hallgren (Carls-

son & Hallgren, 1993; Carlsson & Hallgren, 1998), Haggis by Finne and Peyton
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Jones (Finne & Peyton Jones, 1995), TkGofer by Vullings and Claessen (Claessen

et al., 1997) and, more recently the extension of the former TclHaskell library:

FranTk by Sage (Sage, 2000).

Conclusion

In this paper we have presented Biglook, a widget library for the Bigloo system. The

architecture of Biglook enables different ports. Currently two ports are available:

a GTK+ port and a Swing port. Biglook source code can be indifferently linked

against the two libraries. Biglook Api uses an object oriented programming style to

handle graphical objects and a functional oriented programming style to implement

the interface reactivity. We have found that combining the two programming styles

enables more compact implementations for Guis than most of the other graphical

toolkits.
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